bsnes/fc/apu/apu.cpp

330 lines
8.1 KiB
C++

#include <fc/fc.hpp>
namespace Famicom {
#include "envelope.cpp"
#include "sweep.cpp"
#include "pulse.cpp"
#include "triangle.cpp"
#include "noise.cpp"
#include "dmc.cpp"
#include "serialization.cpp"
APU apu;
const uint8 APU::length_counter_table[32] = {
0x0a, 0xfe, 0x14, 0x02, 0x28, 0x04, 0x50, 0x06, 0xa0, 0x08, 0x3c, 0x0a, 0x0e, 0x0c, 0x1a, 0x0e,
0x0c, 0x10, 0x18, 0x12, 0x30, 0x14, 0x60, 0x16, 0xc0, 0x18, 0x48, 0x1a, 0x10, 0x1c, 0x20, 0x1e,
};
const uint16 APU::ntsc_noise_period_table[16] = {
4, 8, 16, 32, 64, 96, 128, 160, 202, 254, 380, 508, 762, 1016, 2034, 4068,
};
const uint16 APU::pal_noise_period_table[16] = {
4, 7, 14, 30, 60, 88, 118, 148, 188, 236, 354, 472, 708, 944, 1890, 3778,
};
const uint16 APU::ntsc_dmc_period_table[16] = {
428, 380, 340, 320, 286, 254, 226, 214, 190, 160, 142, 128, 106, 84, 72, 54,
};
const uint16 APU::pal_dmc_period_table[16] = {
398, 354, 316, 298, 276, 236, 210, 198, 176, 148, 132, 118, 98, 78, 66, 50,
};
void APU::Main() {
apu.main();
}
void APU::main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
unsigned pulse_output, triangle_output, noise_output, dmc_output;
pulse_output = pulse[0].clock();
pulse_output += pulse[1].clock();
triangle_output = triangle.clock();
noise_output = noise.clock();
dmc_output = dmc.clock();
clock_frame_counter_divider();
signed output = pulse_dac[pulse_output] + dmc_triangle_noise_dac[dmc_output][triangle_output][noise_output];
output = filter.run_hipass_strong(output);
output += cartridge_sample;
output = filter.run_hipass_weak(output);
//output = filter.run_lopass(output);
output = sclamp<16>(output);
interface->audioSample(output, output);
tick();
}
}
void APU::tick() {
clock += 12;
if(clock >= 0 && scheduler.sync != Scheduler::SynchronizeMode::All) co_switch(cpu.thread);
}
void APU::set_irq_line() {
cpu.set_irq_apu_line(frame.irq_pending || dmc.irq_pending);
}
void APU::set_sample(int16 sample) {
cartridge_sample = sample;
}
void APU::power() {
filter.hipass_strong = 0;
filter.hipass_weak = 0;
filter.lopass = 0;
pulse[0].power();
pulse[1].power();
triangle.power();
noise.power();
dmc.power();
}
void APU::reset() {
create(APU::Main, 21477272);
pulse[0].reset();
pulse[1].reset();
triangle.reset();
noise.reset();
dmc.reset();
frame.irq_pending = 0;
frame.mode = 0;
frame.counter = 0;
frame.divider = 1;
enabled_channels = 0;
cartridge_sample = 0;
set_irq_line();
}
uint8 APU::read(uint16 addr) {
if(addr == 0x4015) {
uint8 result = 0x00;
result |= pulse[0].length_counter ? 0x01 : 0;
result |= pulse[1].length_counter ? 0x02 : 0;
result |= triangle.length_counter ? 0x04 : 0;
result |= noise.length_counter ? 0x08 : 0;
result |= dmc.length_counter ? 0x10 : 0;
result |= frame.irq_pending ? 0x40 : 0;
result |= dmc.irq_pending ? 0x80 : 0;
frame.irq_pending = false;
set_irq_line();
return result;
}
return cpu.mdr();
}
void APU::write(uint16 addr, uint8 data) {
const unsigned n = (addr >> 2) & 1; //pulse#
switch(addr) {
case 0x4000: case 0x4004:
pulse[n].duty = data >> 6;
pulse[n].envelope.loop_mode = data & 0x20;
pulse[n].envelope.use_speed_as_volume = data & 0x10;
pulse[n].envelope.speed = data & 0x0f;
break;
case 0x4001: case 0x4005:
pulse[n].sweep.enable = data & 0x80;
pulse[n].sweep.period = (data & 0x70) >> 4;
pulse[n].sweep.decrement = data & 0x08;
pulse[n].sweep.shift = data & 0x07;
pulse[n].sweep.reload = true;
break;
case 0x4002: case 0x4006:
pulse[n].period = (pulse[n].period & 0x0700) | (data << 0);
pulse[n].sweep.pulse_period = (pulse[n].sweep.pulse_period & 0x0700) | (data << 0);
break;
case 0x4003: case 0x4007:
pulse[n].period = (pulse[n].period & 0x00ff) | (data << 8);
pulse[n].sweep.pulse_period = (pulse[n].sweep.pulse_period & 0x00ff) | (data << 8);
pulse[n].duty_counter = 7;
pulse[n].envelope.reload_decay = true;
if(enabled_channels & (1 << n)) {
pulse[n].length_counter = length_counter_table[(data >> 3) & 0x1f];
}
break;
case 0x4008:
triangle.halt_length_counter = data & 0x80;
triangle.linear_length = data & 0x7f;
break;
case 0x400a:
triangle.period = (triangle.period & 0x0700) | (data << 0);
break;
case 0x400b:
triangle.period = (triangle.period & 0x00ff) | (data << 8);
triangle.reload_linear = true;
if(enabled_channels & (1 << 2)) {
triangle.length_counter = length_counter_table[(data >> 3) & 0x1f];
}
break;
case 0x400c:
noise.envelope.loop_mode = data & 0x20;
noise.envelope.use_speed_as_volume = data & 0x10;
noise.envelope.speed = data & 0x0f;
break;
case 0x400e:
noise.short_mode = data & 0x80;
noise.period = data & 0x0f;
break;
case 0x400f:
noise.envelope.reload_decay = true;
if(enabled_channels & (1 << 3)) {
noise.length_counter = length_counter_table[(data >> 3) & 0x1f];
}
break;
case 0x4010:
dmc.irq_enable = data & 0x80;
dmc.loop_mode = data & 0x40;
dmc.period = data & 0x0f;
dmc.irq_pending = dmc.irq_pending && dmc.irq_enable && !dmc.loop_mode;
set_irq_line();
break;
case 0x4011:
dmc.dac_latch = data & 0x7f;
break;
case 0x4012:
dmc.addr_latch = data;
break;
case 0x4013:
dmc.length_latch = data;
break;
case 0x4015:
if((data & 0x01) == 0) pulse[0].length_counter = 0;
if((data & 0x02) == 0) pulse[1].length_counter = 0;
if((data & 0x04) == 0) triangle.length_counter = 0;
if((data & 0x08) == 0) noise.length_counter = 0;
(data & 0x10) ? dmc.start() : dmc.stop();
dmc.irq_pending = false;
set_irq_line();
enabled_channels = data & 0x1f;
break;
case 0x4017:
frame.mode = data >> 6;
frame.counter = 0;
if(frame.mode & 2) clock_frame_counter();
if(frame.mode & 1) {
frame.irq_pending = false;
set_irq_line();
}
frame.divider = FrameCounter::NtscPeriod;
break;
}
}
signed APU::Filter::run_hipass_strong(signed sample) {
hipass_strong += ((((int64)sample << 16) - (hipass_strong >> 16)) * HiPassStrong) >> 16;
return sample - (hipass_strong >> 32);
}
signed APU::Filter::run_hipass_weak(signed sample) {
hipass_weak += ((((int64)sample << 16) - (hipass_weak >> 16)) * HiPassWeak) >> 16;
return sample - (hipass_weak >> 32);
}
signed APU::Filter::run_lopass(signed sample) {
lopass += ((((int64)sample << 16) - (lopass >> 16)) * LoPass) >> 16;
return (lopass >> 32);
}
void APU::clock_frame_counter() {
frame.counter++;
if(frame.counter & 1) {
pulse[0].clock_length();
pulse[0].sweep.clock(0);
pulse[1].clock_length();
pulse[1].sweep.clock(1);
triangle.clock_length();
noise.clock_length();
}
pulse[0].envelope.clock();
pulse[1].envelope.clock();
triangle.clock_linear_length();
noise.envelope.clock();
if(frame.counter == 0) {
if(frame.mode & 2) frame.divider += FrameCounter::NtscPeriod;
if(frame.mode == 0) {
frame.irq_pending = true;
set_irq_line();
}
}
}
void APU::clock_frame_counter_divider() {
frame.divider -= 2;
if(frame.divider <= 0) {
clock_frame_counter();
frame.divider += FrameCounter::NtscPeriod;
}
}
APU::APU() {
for(unsigned amp = 0; amp < 32; amp++) {
if(amp == 0) {
pulse_dac[amp] = 0;
} else {
pulse_dac[amp] = 16384.0 * 95.88 / (8128.0 / amp + 100.0);
}
}
for(unsigned dmc_amp = 0; dmc_amp < 128; dmc_amp++) {
for(unsigned triangle_amp = 0; triangle_amp < 16; triangle_amp++) {
for(unsigned noise_amp = 0; noise_amp < 16; noise_amp++) {
if(dmc_amp == 0 && triangle_amp == 0 && noise_amp == 0) {
dmc_triangle_noise_dac[dmc_amp][triangle_amp][noise_amp] = 0;
} else {
dmc_triangle_noise_dac[dmc_amp][triangle_amp][noise_amp]
= 16384.0 * 159.79 / (100.0 + 1.0 / (triangle_amp / 8227.0 + noise_amp / 12241.0 + dmc_amp / 22638.0));
}
}
}
}
}
}