#version 150 /* ScaleFX - Pass 2 by Sp00kyFox, 2017-03-01 Filter: Nearest Scale: 1x ScaleFX is an edge interpolation algorithm specialized in pixel art. It was originally intended as an improvement upon Scale3x but became a new filter in its own right. ScaleFX interpolates edges up to level 6 and makes smooth transitions between different slopes. The filtered picture will only consist of colours present in the original. Pass 2 resolves ambiguous configurations of corner candidates at pixel junctions. Copyright (c) 2016 Sp00kyFox - ScaleFX@web.de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ uniform sampler2D source[]; uniform vec4 sourceSize[]; uniform vec4 targetSize; in Vertex { vec2 vTexCoord; }; out vec4 FragColor; #define LE(x, y) (1 - step(y, x)) #define GE(x, y) (1 - step(x, y)) #define LEQ(x, y) step(x, y) #define GEQ(x, y) step(y, x) #define NOT(x) (1 - (x)) // corner dominance at junctions vec4 dom(vec3 x, vec3 y, vec3 z, vec3 w){ return 2 * vec4(x.y, y.y, z.y, w.y) - (vec4(x.x, y.x, z.x, w.x) + vec4(x.z, y.z, z.z, w.z)); } // necessary but not sufficient junction condition for orthogonal edges float clear(vec2 crn, vec2 a, vec2 b){ return (crn.x >= max(min(a.x, a.y), min(b.x, b.y))) && (crn.y >= max(min(a.x, b.y), min(b.x, a.y))) ? 1 : 0; } void main() { /* grid metric pattern A B C x y z x y D E F o w w z G H I */ #define TEXm(x, y) textureOffset(source[1], vTexCoord, ivec2(x, y)) #define TEXs(x, y) textureOffset(source[0], vTexCoord, ivec2(x, y)) // metric data vec4 A = TEXm(-1,-1), B = TEXm( 0,-1); vec4 D = TEXm(-1, 0), E = TEXm( 0, 0), F = TEXm( 1, 0); vec4 G = TEXm(-1, 1), H = TEXm( 0, 1), I = TEXm( 1, 1); // strength data vec4 As = TEXs(-1,-1), Bs = TEXs( 0,-1), Cs = TEXs( 1,-1); vec4 Ds = TEXs(-1, 0), Es = TEXs( 0, 0), Fs = TEXs( 1, 0); vec4 Gs = TEXs(-1, 1), Hs = TEXs( 0, 1), Is = TEXs( 1, 1); // strength & dominance junctions vec4 jSx = vec4(As.z, Bs.w, Es.x, Ds.y), jDx = dom(As.yzw, Bs.zwx, Es.wxy, Ds.xyz); vec4 jSy = vec4(Bs.z, Cs.w, Fs.x, Es.y), jDy = dom(Bs.yzw, Cs.zwx, Fs.wxy, Es.xyz); vec4 jSz = vec4(Es.z, Fs.w, Is.x, Hs.y), jDz = dom(Es.yzw, Fs.zwx, Is.wxy, Hs.xyz); vec4 jSw = vec4(Ds.z, Es.w, Hs.x, Gs.y), jDw = dom(Ds.yzw, Es.zwx, Hs.wxy, Gs.xyz); // majority vote for ambiguous dominance junctions vec4 zero4 = vec4(0); vec4 jx = min(GE(jDx, zero4) * (LEQ(jDx.yzwx, zero4) * LEQ(jDx.wxyz, zero4) + GE(jDx + jDx.zwxy, jDx.yzwx + jDx.wxyz)), 1); vec4 jy = min(GE(jDy, zero4) * (LEQ(jDy.yzwx, zero4) * LEQ(jDy.wxyz, zero4) + GE(jDy + jDy.zwxy, jDy.yzwx + jDy.wxyz)), 1); vec4 jz = min(GE(jDz, zero4) * (LEQ(jDz.yzwx, zero4) * LEQ(jDz.wxyz, zero4) + GE(jDz + jDz.zwxy, jDz.yzwx + jDz.wxyz)), 1); vec4 jw = min(GE(jDw, zero4) * (LEQ(jDw.yzwx, zero4) * LEQ(jDw.wxyz, zero4) + GE(jDw + jDw.zwxy, jDw.yzwx + jDw.wxyz)), 1); // inject strength without creating new contradictions vec4 res; res.x = min(jx.z + NOT(jx.y) * NOT(jx.w) * GE(jSx.z, 0) * (jx.x + GE(jSx.x + jSx.z, jSx.y + jSx.w)), 1); res.y = min(jy.w + NOT(jy.z) * NOT(jy.x) * GE(jSy.w, 0) * (jy.y + GE(jSy.y + jSy.w, jSy.x + jSy.z)), 1); res.z = min(jz.x + NOT(jz.w) * NOT(jz.y) * GE(jSz.x, 0) * (jz.z + GE(jSz.x + jSz.z, jSz.y + jSz.w)), 1); res.w = min(jw.y + NOT(jw.x) * NOT(jw.z) * GE(jSw.y, 0) * (jw.w + GE(jSw.y + jSw.w, jSw.x + jSw.z)), 1); // single pixel & end of line detection res = min(res * (vec4(jx.z, jy.w, jz.x, jw.y) + NOT(res.wxyz * res.yzwx)), 1); // output vec4 clr; clr.x = clear(vec2(D.z, E.x), vec2(D.w, E.y), vec2(A.w, D.y)); clr.y = clear(vec2(F.x, E.z), vec2(E.w, E.y), vec2(B.w, F.y)); clr.z = clear(vec2(H.z, I.x), vec2(E.w, H.y), vec2(H.w, I.y)); clr.w = clear(vec2(H.x, G.z), vec2(D.w, H.y), vec2(G.w, G.y)); vec4 h = vec4(min(D.w, A.w), min(E.w, B.w), min(E.w, H.w), min(D.w, G.w)); vec4 v = vec4(min(E.y, D.y), min(E.y, F.y), min(H.y, I.y), min(H.y, G.y)); vec4 or = GE(h + vec4(D.w, E.w, E.w, D.w), v + vec4(E.y, E.y, H.y, H.y)); // orientation vec4 hori = LE(h, v) * clr; // horizontal edges vec4 vert = GE(h, v) * clr; // vertical edges FragColor = (res + 2 * hori + 4 * vert + 8 * or) / 15; }