auto SPC700::instructionAbsoluteBitModify(uint3 mode) -> void { uint16 address = fetch(); address |= fetch() << 8; uint3 bit = address >> 13; address &= 0x1fff; uint8 data = read(address); switch(mode) { case 0: //or addr:bit idle(); CF |= data.bit(bit); break; case 1: //or !addr:bit idle(); CF |= !data.bit(bit); break; case 2: //and addr:bit CF &= data.bit(bit); break; case 3: //and !addr:bit CF &= !data.bit(bit); break; case 4: //eor addr:bit idle(); CF ^= data.bit(bit); break; case 5: //ld addr:bit CF = data.bit(bit); break; case 6: //st addr:bit idle(); data.bit(bit) = CF; write(address, data); break; case 7: //not addr:bit data.bit(bit) ^= 1; write(address, data); break; } } auto SPC700::instructionAbsoluteBitSet(uint3 bit, bool value) -> void { uint8 address = fetch(); uint8 data = load(address); data.bit(bit) = value; store(address, data); } auto SPC700::instructionAbsoluteRead(fpb op, uint8& target) -> void { uint16 address = fetch(); address |= fetch() << 8; uint8 data = read(address); target = alu(target, data); } auto SPC700::instructionAbsoluteModify(fps op) -> void { uint16 address = fetch(); address |= fetch() << 8; uint8 data = read(address); write(address, alu(data)); } auto SPC700::instructionAbsoluteWrite(uint8& data) -> void { uint16 address = fetch(); address |= fetch() << 8; read(address); write(address, data); } auto SPC700::instructionAbsoluteIndexedRead(fpb op, uint8& index) -> void { uint16 address = fetch(); address |= fetch() << 8; idle(); uint8 data = read(address + index); A = alu(A, data); } auto SPC700::instructionAbsoluteIndexedWrite(uint8& index) -> void { uint16 address = fetch(); address |= fetch() << 8; idle(); read(address + index); write(address + index, A); } auto SPC700::instructionBranch(bool take) -> void { uint8 data = fetch(); if(!take) return; idle(); idle(); PC += (int8)data; } auto SPC700::instructionBranchBit(uint3 bit, bool match) -> void { uint8 address = fetch(); uint8 data = load(address); idle(); uint8 displacement = fetch(); if(data.bit(bit) != match) return; idle(); idle(); PC += (int8)displacement; } auto SPC700::instructionBranchNotDirect() -> void { uint8 address = fetch(); uint8 data = load(address); idle(); uint8 displacement = fetch(); if(A == data) return; idle(); idle(); PC += (int8)displacement; } auto SPC700::instructionBranchNotDirectDecrement() -> void { uint8 address = fetch(); uint8 data = load(address); store(address, --data); uint8 displacement = fetch(); if(data == 0) return; idle(); idle(); PC += (int8)displacement; } auto SPC700::instructionBranchNotDirectIndexed(uint8& index) -> void { uint8 address = fetch(); idle(); uint8 data = load(address + index); idle(); uint8 displacement = fetch(); if(A == data) return; idle(); idle(); PC += (int8)displacement; } auto SPC700::instructionBranchNotYDecrement() -> void { read(PC); idle(); uint8 displacement = fetch(); if(--Y == 0) return; idle(); idle(); PC += (int8)displacement; } auto SPC700::instructionBreak() -> void { read(PC); push(PC >> 8); push(PC >> 0); push(P); idle(); uint16 address = read(0xffde + 0); address |= read(0xffde + 1) << 8; PC = address; IF = 0; BF = 1; } auto SPC700::instructionCallAbsolute() -> void { uint16 address = fetch(); address |= fetch() << 8; idle(); push(PC >> 8); push(PC >> 0); idle(); idle(); PC = address; } auto SPC700::instructionCallPage() -> void { uint8 address = fetch(); idle(); push(PC >> 8); push(PC >> 0); idle(); PC = 0xff00 | address; } auto SPC700::instructionCallTable(uint4 vector) -> void { read(PC); idle(); push(PC >> 8); push(PC >> 0); idle(); uint16 address = 0xffde - (vector << 1); uint16 pc = read(address + 0); pc |= read(address + 1) << 8; PC = pc; } auto SPC700::instructionComplementCarry() -> void { read(PC); idle(); CF = !CF; } auto SPC700::instructionDecimalAdjustAdd() -> void { read(PC); idle(); if(CF || A > 0x99) { A += 0x60; CF = 1; } if(HF || (A & 15) > 0x09) { A += 0x06; } ZF = A == 0; NF = A & 0x80; } auto SPC700::instructionDecimalAdjustSub() -> void { read(PC); idle(); if(!CF || A > 0x99) { A -= 0x60; CF = 0; } if(!HF || (A & 15) > 0x09) { A -= 0x06; } ZF = A == 0; NF = A & 0x80; } auto SPC700::instructionDirectRead(fpb op, uint8& target) -> void { uint8 address = fetch(); uint8 data = load(address); target = alu(target, data); } auto SPC700::instructionDirectModify(fps op) -> void { uint8 address = fetch(); uint8 data = load(address); store(address, alu(data)); } auto SPC700::instructionDirectWrite(uint8& data) -> void { uint8 address = fetch(); load(address); store(address, data); } auto SPC700::instructionDirectDirectCompare(fpb op) -> void { uint8 source = fetch(); uint8 rhs = load(source); uint8 target = fetch(); uint8 lhs = load(target); lhs = alu(lhs, rhs); load(target); } auto SPC700::instructionDirectDirectModify(fpb op) -> void { uint8 source = fetch(); uint8 rhs = load(source); uint8 target = fetch(); uint8 lhs = load(target); lhs = alu(lhs, rhs); store(target, lhs); } auto SPC700::instructionDirectDirectWrite() -> void { uint8 source = fetch(); uint8 data = load(source); uint8 target = fetch(); store(target, data); } auto SPC700::instructionDirectImmediateCompare(fpb op) -> void { uint8 immediate = fetch(); uint8 address = fetch(); uint8 data = load(address); data = alu(data, immediate); load(address); } auto SPC700::instructionDirectImmediateModify(fpb op) -> void { uint8 immediate = fetch(); uint8 address = fetch(); uint8 data = load(address); data = alu(data, immediate); store(address, data); } auto SPC700::instructionDirectImmediateWrite() -> void { uint8 immediate = fetch(); uint8 address = fetch(); load(address); store(address, immediate); } auto SPC700::instructionDirectCompareWord(fpw op) -> void { uint8 address = fetch(); uint16 data = load(address + 0); data |= load(address + 1) << 8; YA = alu(YA, data); } auto SPC700::instructionDirectReadWord(fpw op) -> void { uint8 address = fetch(); uint16 data = load(address + 0); idle(); data |= load(address + 1) << 8; YA = alu(YA, data); } auto SPC700::instructionDirectModifyWord(int adjust) -> void { uint8 address = fetch(); uint16 data = load(address + 0) + adjust; store(address + 0, data >> 0); data += load(address + 1) << 8; store(address + 1, data >> 8); ZF = data == 0; NF = data & 0x8000; } auto SPC700::instructionDirectWriteWord() -> void { uint8 address = fetch(); load(address + 0); store(address + 0, A); store(address + 1, Y); } auto SPC700::instructionDirectIndexedRead(fpb op, uint8& target, uint8& index) -> void { uint8 address = fetch(); idle(); uint8 data = load(address + index); target = alu(target, data); } auto SPC700::instructionDirectIndexedModify(fps op, uint8& index) -> void { uint8 address = fetch(); idle(); uint8 data = load(address + index); store(address + index, alu(data)); } auto SPC700::instructionDirectIndexedWrite(uint8& data, uint8& index) -> void { uint8 address = fetch(); idle(); load(address + index); store(address + index, data); } auto SPC700::instructionDivide() -> void { read(PC); idle(); idle(); idle(); idle(); idle(); idle(); idle(); idle(); idle(); idle(); uint16 ya = YA; //overflow set if quotient >= 256 HF = (Y & 15) >= (X & 15); VF = Y >= X; if(Y < (X << 1)) { //if quotient is <= 511 (will fit into 9-bit result) A = ya / X; Y = ya % X; } else { //otherwise, the quotient won't fit into VF + A //this emulates the odd behavior of the S-SMP in this case A = 255 - (ya - (X << 9)) / (256 - X); Y = X + (ya - (X << 9)) % (256 - X); } //result is set based on a (quotient) only ZF = A == 0; NF = A & 0x80; } auto SPC700::instructionExchangeNibble() -> void { read(PC); idle(); idle(); idle(); A = A >> 4 | A << 4; ZF = A == 0; NF = A & 0x80; } auto SPC700::instructionFlagSet(bool& flag, bool value) -> void { read(PC); if(&flag == &IF) idle(); flag = value; } auto SPC700::instructionImmediateRead(fpb op, uint8& target) -> void { uint8 data = fetch(); target = alu(target, data); } auto SPC700::instructionImpliedModify(fps op, uint8& target) -> void { read(PC); target = alu(target); } auto SPC700::instructionIndexedIndirectRead(fpb op, uint8& index) -> void { uint8 indirect = fetch(); idle(); uint16 address = load(indirect + index + 0); address |= load(indirect + index + 1) << 8; uint8 data = read(address); A = alu(A, data); } auto SPC700::instructionIndexedIndirectWrite(uint8& data, uint8& index) -> void { uint8 indirect = fetch(); idle(); uint16 address = load(indirect + index + 0); address |= load(indirect + index + 1) << 8; read(address); write(address, data); } auto SPC700::instructionIndirectIndexedRead(fpb op, uint8& index) -> void { uint8 indirect = fetch(); uint16 address = load(indirect + 0); address |= load(indirect + 1) << 8; idle(); uint8 data = read(address + index); A = alu(A, data); } auto SPC700::instructionIndirectIndexedWrite(uint8& data, uint8& index) -> void { uint8 indirect = fetch(); uint16 address = load(indirect + 0); address |= load(indirect + 1) << 8; idle(); read(address + index); write(address + index, data); } auto SPC700::instructionIndirectXRead(fpb op) -> void { read(PC); uint8 data = load(X); A = alu(A, data); } auto SPC700::instructionIndirectXWrite(uint8& data) -> void { read(PC); load(X); store(X, data); } auto SPC700::instructionIndirectXIncrementRead(uint8& data) -> void { read(PC); data = load(X++); idle(); //quirk: consumes extra idle cycle compared to most read instructions ZF = data == 0; NF = data & 0x80; } auto SPC700::instructionIndirectXIncrementWrite(uint8& data) -> void { read(PC); idle(); //quirk: not a read cycle as with most write instructions store(X++, data); } auto SPC700::instructionIndirectXCompareIndirectY(fpb op) -> void { read(PC); uint8 rhs = load(Y); uint8 lhs = load(X); lhs = alu(lhs, rhs); load(X); } auto SPC700::instructionIndirectXWriteIndirectY(fpb op) -> void { read(PC); uint8 rhs = load(Y); uint8 lhs = load(X); lhs = alu(lhs, rhs); store(X, lhs); } auto SPC700::instructionJumpAbsolute() -> void { uint16 address = fetch(); address |= fetch() << 8; PC = address; } auto SPC700::instructionJumpIndirectX() -> void { uint16 address = fetch(); address |= fetch() << 8; idle(); uint16 pc = read(address + X + 0); pc |= read(address + X + 1) << 8; PC = pc; } auto SPC700::instructionMultiply() -> void { read(PC); idle(); idle(); idle(); idle(); idle(); idle(); idle(); uint16 ya = Y * A; A = ya >> 0; Y = ya >> 8; //result is set based on y (high-byte) only ZF = Y == 0; NF = Y & 0x80; } auto SPC700::instructionNoOperation() -> void { read(PC); } auto SPC700::instructionOverflowClear() -> void { read(PC); HF = 0; VF = 0; } auto SPC700::instructionPull(uint8& data) -> void { read(PC); idle(); data = pull(); } auto SPC700::instructionPullP() -> void { read(PC); idle(); P = pull(); } auto SPC700::instructionPush(uint8 data) -> void { read(PC); push(data); idle(); } auto SPC700::instructionReturnInterrupt() -> void { read(PC); idle(); P = pull(); uint16 address = pull(); address |= pull() << 8; PC = address; } auto SPC700::instructionReturnSubroutine() -> void { read(PC); idle(); uint16 address = pull(); address |= pull() << 8; PC = address; } auto SPC700::instructionStop() -> void { r.stop = true; while(r.stop && !synchronizing()) { read(PC); idle(); } } auto SPC700::instructionTestSetBitsAbsolute(bool set) -> void { uint16 address = fetch(); address |= fetch() << 8; uint8 data = read(address); ZF = (A - data) == 0; NF = (A - data) & 0x80; read(address); write(address, set ? data | A : data & ~A); } auto SPC700::instructionTransfer(uint8& from, uint8& to) -> void { read(PC); to = from; if(&to == &S) return; ZF = to == 0; NF = to & 0x80; } auto SPC700::instructionWait() -> void { r.wait = true; while(r.wait && !synchronizing()) { read(PC); idle(); } }