struct VRC2 : Chip { VRC2(Board& board) : Chip(board) { } auto prg_addr(uint addr) const -> uint { uint bank; switch(addr & 0xe000) { case 0x8000: bank = prg_bank[0]; break; case 0xa000: bank = prg_bank[1]; break; case 0xc000: bank = 0x1e; break; case 0xe000: bank = 0x1f; break; } return (bank * 0x2000) + (addr & 0x1fff); } auto chr_addr(uint addr) const -> uint { uint bank = chr_bank[addr / 0x0400]; return (bank * 0x0400) + (addr & 0x03ff); } auto ciram_addr(uint addr) const -> uint { switch(mirror) { case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring case 2: return 0x0000 | (addr & 0x03ff); //one-screen mirroring (first) case 3: return 0x0400 | (addr & 0x03ff); //one-screen mirroring (second) } throw; } auto ram_read(uint addr) -> uint8 { if(board.prgram.size == 0) { if((addr & 0xf000) == 0x6000) return cpu.mdr() | latch; return cpu.mdr(); } return board.prgram.read(addr & 0x1fff); } auto ram_write(uint addr, uint8 data) -> void { if(board.prgram.size == 0) { if((addr & 0xf000) == 0x6000) latch = data & 0x01; return; } return board.prgram.write(addr & 0x1fff, data); } auto reg_write(uint addr, uint8 data) -> void { switch(addr) { case 0x8000: case 0x8001: case 0x8002: case 0x8003: prg_bank[0] = data & 0x1f; break; case 0x9000: case 0x9001: case 0x9002: case 0x9003: mirror = data & 0x03; break; case 0xa000: case 0xa001: case 0xa002: case 0xa003: prg_bank[1] = data & 0x1f; break; case 0xb000: chr_bank[0] = (chr_bank[0] & 0xf0) | ((data & 0x0f) << 0); break; case 0xb001: chr_bank[0] = (chr_bank[0] & 0x0f) | ((data & 0x0f) << 4); break; case 0xb002: chr_bank[1] = (chr_bank[1] & 0xf0) | ((data & 0x0f) << 0); break; case 0xb003: chr_bank[1] = (chr_bank[1] & 0x0f) | ((data & 0x0f) << 4); break; case 0xc000: chr_bank[2] = (chr_bank[2] & 0xf0) | ((data & 0x0f) << 0); break; case 0xc001: chr_bank[2] = (chr_bank[2] & 0x0f) | ((data & 0x0f) << 4); break; case 0xc002: chr_bank[3] = (chr_bank[3] & 0xf0) | ((data & 0x0f) << 0); break; case 0xc003: chr_bank[3] = (chr_bank[3] & 0x0f) | ((data & 0x0f) << 4); break; case 0xd000: chr_bank[4] = (chr_bank[4] & 0xf0) | ((data & 0x0f) << 0); break; case 0xd001: chr_bank[4] = (chr_bank[4] & 0x0f) | ((data & 0x0f) << 4); break; case 0xd002: chr_bank[5] = (chr_bank[5] & 0xf0) | ((data & 0x0f) << 0); break; case 0xd003: chr_bank[5] = (chr_bank[5] & 0x0f) | ((data & 0x0f) << 4); break; case 0xe000: chr_bank[6] = (chr_bank[6] & 0xf0) | ((data & 0x0f) << 0); break; case 0xe001: chr_bank[6] = (chr_bank[6] & 0x0f) | ((data & 0x0f) << 4); break; case 0xe002: chr_bank[7] = (chr_bank[7] & 0xf0) | ((data & 0x0f) << 0); break; case 0xe003: chr_bank[7] = (chr_bank[7] & 0x0f) | ((data & 0x0f) << 4); break; } } auto power() -> void { } auto reset() -> void { for(auto& n : prg_bank) n = 0; for(auto& n : chr_bank) n = 0; mirror = 0; latch = 0; } auto serialize(serializer& s) -> void { for(auto& n : prg_bank) s.integer(n); for(auto& n : chr_bank) s.integer(n); s.integer(mirror); s.integer(latch); } uint5 prg_bank[2]; uint8 chr_bank[8]; uint2 mirror; bool latch; };