#include #define CPU_CPP namespace SuperFamicom { CPU cpu; #include "serialization.cpp" #include "dma/dma.cpp" #include "memory/memory.cpp" #include "mmio/mmio.cpp" #include "timing/timing.cpp" void CPU::step(unsigned clocks) { smp.clock -= clocks * (uint64)smp.frequency; ppu.clock -= clocks; for(unsigned i = 0; i < coprocessors.size(); i++) { auto& chip = *coprocessors[i]; chip.clock -= clocks * (uint64)chip.frequency; } input.port1->clock -= clocks * (uint64)input.port1->frequency; input.port2->clock -= clocks * (uint64)input.port2->frequency; synchronize_controllers(); } void CPU::synchronize_smp() { if(SMP::Threaded == true) { if(smp.clock < 0) co_switch(smp.thread); } else { while(smp.clock < 0) smp.enter(); } } void CPU::synchronize_ppu() { if(PPU::Threaded == true) { if(ppu.clock < 0) co_switch(ppu.thread); } else { while(ppu.clock < 0) ppu.enter(); } } void CPU::synchronize_coprocessors() { for(unsigned i = 0; i < coprocessors.size(); i++) { auto& chip = *coprocessors[i]; if(chip.clock < 0) co_switch(chip.thread); } } void CPU::synchronize_controllers() { if(input.port1->clock < 0) co_switch(input.port1->thread); if(input.port2->clock < 0) co_switch(input.port2->thread); } void CPU::Enter() { cpu.enter(); } void CPU::enter() { while(true) { if(scheduler.sync == Scheduler::SynchronizeMode::CPU) { scheduler.sync = Scheduler::SynchronizeMode::All; scheduler.exit(Scheduler::ExitReason::SynchronizeEvent); } if(status.interrupt_pending) { status.interrupt_pending = false; if(status.nmi_pending) { status.nmi_pending = false; regs.vector = (regs.e == false ? 0xffea : 0xfffa); op_irq(); debugger.op_nmi(); } else if(status.irq_pending) { status.irq_pending = false; regs.vector = (regs.e == false ? 0xffee : 0xfffe); op_irq(); debugger.op_irq(); } else if(status.reset_pending) { status.reset_pending = false; add_clocks(186); regs.pc.l = bus.read(0xfffc); regs.pc.h = bus.read(0xfffd); } } op_step(); } } void CPU::op_step() { debugger.op_exec(regs.pc.d); (this->*opcode_table[op_readpc()])(); } void CPU::enable() { function reader = {&CPU::mmio_read, (CPU*)&cpu}; function writer = {&CPU::mmio_write, (CPU*)&cpu}; bus.map(reader, writer, 0x00, 0x3f, 0x2140, 0x2183); bus.map(reader, writer, 0x80, 0xbf, 0x2140, 0x2183); bus.map(reader, writer, 0x00, 0x3f, 0x4016, 0x4017); bus.map(reader, writer, 0x80, 0xbf, 0x4016, 0x4017); bus.map(reader, writer, 0x00, 0x3f, 0x4200, 0x421f); bus.map(reader, writer, 0x80, 0xbf, 0x4200, 0x421f); bus.map(reader, writer, 0x00, 0x3f, 0x4300, 0x437f); bus.map(reader, writer, 0x80, 0xbf, 0x4300, 0x437f); reader = [](unsigned addr) { return cpu.wram[addr]; }; writer = [](unsigned addr, uint8 data) { cpu.wram[addr] = data; }; bus.map(reader, writer, 0x00, 0x3f, 0x0000, 0x1fff, 0x002000); bus.map(reader, writer, 0x80, 0xbf, 0x0000, 0x1fff, 0x002000); bus.map(reader, writer, 0x7e, 0x7f, 0x0000, 0xffff, 0x020000); } void CPU::power() { for(auto& byte : wram) byte = random(0x55); regs.a = regs.x = regs.y = 0x0000; regs.s = 0x01ff; mmio_power(); dma_power(); timing_power(); } void CPU::reset() { create(Enter, system.cpu_frequency()); coprocessors.reset(); PPUcounter::reset(); //note: some registers are not fully reset by SNES regs.pc = 0x000000; regs.x.h = 0x00; regs.y.h = 0x00; regs.s.h = 0x01; regs.d = 0x0000; regs.db = 0x00; regs.p = 0x34; regs.e = 1; regs.mdr = 0x00; regs.wai = false; regs.vector = 0xfffc; //reset vector address update_table(); mmio_reset(); dma_reset(); timing_reset(); } CPU::CPU() { PPUcounter::scanline = {&CPU::scanline, this}; } CPU::~CPU() { } }