input filter: nearest // IMPORTANT: // Shader passes need to know details about the image in the mask_texture LUT // files, so set the following constants in user-preset-constants.h accordingly: // 1.) mask_triads_per_tile = (number of horizontal triads in mask texture LUT's) // 2.) mask_texture_small_size = (texture size of mask*texture_small LUT's) // 3.) mask_texture_large_size = (texture size of mask*texture_large LUT's) // 4.) mask_grille_avg_color = (avg. brightness of mask_grille_texture* LUT's, in [0, 1]) // 5.) mask_slot_avg_color = (avg. brightness of mask_slot_texture* LUT's, in [0, 1]) // 6.) mask_shadow_avg_color = (avg. brightness of mask_shadow_texture* LUT's, in [0, 1]) // Shader passes also need to know certain scales set in this preset, but their // compilation model doesn't currently allow the preset file to tell them. Make // sure to set the following constants in user-preset-constants.h accordingly too: // 1.) bloom_approx_scale_x = scale_x2 // 2.) mask_resize_viewport_scale = vec2(scale_x6, scale_y5) // Finally, shader passes need to know the value of geom_max_aspect_ratio used to // calculate scale_y5 (among other values): // 1.) geom_max_aspect_ratio = (geom_max_aspect_ratio used to calculate scale_y5) // Pass0: Linearize the input based on CRT gamma and bob interlaced fields. // (Bobbing ensures we can immediately blur without getting artifacts.) program filter: nearest vertex: first-pass-linearize-crt-gamma-bob-fields.vs fragment: first-pass-linearize-crt-gamma-bob-fields.fs format: rgba16f height: 100% width: 100% // Pass1: Resample interlaced (and misconverged) scanlines vertically. // Separating vertical/horizontal scanline sampling is faster: It lets us // consider more scanlines while calculating weights for fewer pixels, and // it reduces our samples from vertical*horizontal to vertical+horizontal. // This has to come right after ORIG_LINEARIZED, because there's no // "original_source" scale_type we can use later. program filter: linear vertex: scanlines-vertical-interlacing.vs fragment: scanlines-vertical-interlacing.fs height: 400% width: 100% format: rgba16f // Pass2: Do a small resize blur of ORIG_LINEARIZED at an absolute size, and // account for convergence offsets. We want to blur a predictable portion of the // screen to match the phosphor bloom, and absolute scale works best for // reliable results with a fixed-size bloom. Picking a scale is tricky: // a.) 400x300 is a good compromise for the "fake-bloom" version: It's low enough // to blur high-res/interlaced sources but high enough that resampling // doesn't smear low-res sources too much. // b.) 320x240 works well for the "real bloom" version: It's 1-1.5% faster, and // the only noticeable visual difference is a larger halation spread (which // may be a good thing for people who like to crank it up). // Note the 4:3 aspect ratio assumes the input has cropped geom_overscan (so it's // *intended* for an ~4:3 aspect ratio). program filter: linear vertex: bloom-approx.vs fragment: bloom-approx.fs format: rgba16f width: 320 px height: 240 px // Pass3: Vertically blur the input for halation and refractive diffusion. // Base this on BLOOM_APPROX: This blur should be small and fast, and blurring // a constant portion of the screen is probably physically correct if the // viewport resolution is proportional to the simulated CRT size. program filter: linear vertex: blur9fast-vertical.vs fragment: blur9fast-vertical.fs format: rgba16f height: 100% width: 100% // Pass4: Horizontally blur the input for halation and refractive diffusion. // Note: Using a one-pass 9x9 blur is about 1% slower. program filter: linear vertex: blur9fast-horizontal.vs fragment: blur9fast-horizontal.fs format: rgba16f height: 100% width: 100% // Pass5: Lanczos-resize the phosphor mask vertically. Set the absolute // scale_x5 == mask_texture_small_size.x (see IMPORTANT above). Larger scales // will blur, and smaller scales could get nasty. The vertical size must be // based on the viewport size and calculated carefully to avoid artifacts later. // First calculate the minimum number of mask tiles we need to draw. // Since curvature is computed after the scanline masking pass: // num_resized_mask_tiles = 2.0; // If curvature were computed in the scanline masking pass (it's not): // max_mask_texel_border = ~3.0 * (1/3.0 + 4.0*sqrt(2.0) + 0.5 + 1.0); // max_mask_tile_border = max_mask_texel_border/ // (min_resized_phosphor_triad_size * mask_triads_per_tile); // num_resized_mask_tiles = max(2.0, 1.0 + max_mask_tile_border * 2.0); // At typical values (triad_size >= 2.0, mask_triads_per_tile == 8): // num_resized_mask_tiles = ~3.8 // Triad sizes are given in horizontal terms, so we need geom_max_aspect_ratio // to relate them to vertical resolution. The widest we expect is: // geom_max_aspect_ratio = 4.0/3.0 // Note: Shader passes need to know this! // The fewer triads we tile across the screen, the larger each triad will be as a // fraction of the viewport size, and the larger scale_y5 must be to draw a full // num_resized_mask_tiles. Therefore, we must decide the smallest number of // triads we'll guarantee can be displayed on screen. We'll set this according // to 3-pixel triads at 768p resolution (the lowest anyone's likely to use): // min_allowed_viewport_triads = 768.0*geom_max_aspect_ratio / 3.0 = 341.333333 // Now calculate the viewport scale that ensures we can draw resized_mask_tiles: // min_scale_x = resized_mask_tiles * mask_triads_per_tile / // min_allowed_viewport_triads // scale_y5 = geom_max_aspect_ratio * min_scale_x // # Some code might depend on equal scales: // scale_x6 = scale_y5 // Given our default geom_max_aspect_ratio and min_allowed_viewport_triads: // scale_y5 = 4.0/3.0 * 2.0/(341.33333 / 8.0) = 0.0625 // IMPORTANT: The scales MUST be calculated in this way. If you wish to change // geom_max_aspect_ratio, update that constant in user-preset-constants.h! program filter: linear format: rgba16f width: 64 px height: 6.25% vertex: mask-resize-vertical.vs fragment: mask-resize-vertical.fs pixmap: textures/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png filter: linear wrap: repeat pixmap: textures/TileableLinearApertureGrille15Wide8And5d5Spacing.png filter: linear wrap: repeat pixmap: textures/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png filter: linear wrap: repeat pixmap: textures/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing.png filter: linear wrap: repeat pixmap: textures/TileableLinearShadowMaskEDPResizeTo64.png filter: linear wrap: repeat pixmap: textures/TileableLinearShadowMaskEDP.png filter: linear wrap: repeat // Pass6: Lanczos-resize the phosphor mask horizontally. scale_x6 = scale_y5. // TODO: Check again if the shaders actually require equal scales. program filter: nearest vertex: mask-resize-horizontal.vs fragment: mask-resize-horizontal.fs format: rgba16f // Pass7: Resample (misconverged) scanlines horizontally, apply halation, and // apply the phosphor mask. program filter: linear format: rgba16f height: 100% width: 100% vertex: scanlines-horizontal-apply-mask.vs fragment: scanlines-horizontal-apply-mask.fs pixmap: textures/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png filter: linear wrap: repeat pixmap: textures/TileableLinearApertureGrille15Wide8And5d5Spacing.png filter: linear wrap: repeat pixmap: textures/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png filter: linear wrap: repeat pixmap: textures/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing.png filter: linear wrap: repeat pixmap: textures/TileableLinearShadowMaskEDPResizeTo64.png filter: linear wrap: repeat pixmap: textures/TileableLinearShadowMaskEDP.png filter: linear wrap: repeat // Pass 8: Compute a brightpass. This will require reading the final mask. program filter: linear format: rgba16f vertex: brightpass.vs fragment: brightpass.fs // Pass 9: Blur the brightpass vertically program filter: linear format: rgba16f vertex: bloom-vertical.vs fragment: bloom-vertical.fs // Pass 10: Blur the brightpass horizontally and combine it with the dimpass: program filter: linear format: rgba16f height: 100% width: 100% vertex: bloom-horizontal-reconstitute.vs fragment: bloom-horizontal-reconstitute.fs // Pass 11: Compute curvature/AA: program filter: linear format: rgba16f vertex: geometry-aa-last-pass.vs fragment: geometry-aa-last-pass.fs output filter: nearest