//SUNSOFT-5B struct Sunsoft5B : Board { uint4 mmu_port; uint4 apu_port; uint8 prg_bank[4]; uint8 chr_bank[8]; uint2 mirror; bool irq_enable; bool irq_counter_enable; uint16 irq_counter; int16 dac[16]; struct Pulse { bool disable; uint12 frequency; uint4 volume; uint16 counter; //12-bit countdown + 4-bit phase uint1 duty; uint4 output; void clock() { if(--counter == 0) { counter = frequency << 4; duty ^= 1; } output = duty ? volume : (uint4)0; if(disable) output = 0; } void reset() { disable = 1; frequency = 1; volume = 0; counter = 0; duty = 0; output = 0; } void serialize(serializer &s) { s.integer(disable); s.integer(frequency); s.integer(volume); s.integer(counter); s.integer(duty); s.integer(output); } } pulse[3]; void main() { while(true) { if(scheduler.sync == Scheduler::SynchronizeMode::All) { scheduler.exit(Scheduler::ExitReason::SynchronizeEvent); } if(irq_counter_enable) { if(--irq_counter == 0xffff) { cpu.set_irq_line(irq_enable); } } pulse[0].clock(); pulse[1].clock(); pulse[2].clock(); int16 output = dac[pulse[0].output] + dac[pulse[1].output] + dac[pulse[2].output]; apu.set_sample(-output); tick(); } } uint8 prg_read(unsigned addr) { if(addr < 0x6000) return cpu.mdr(); uint8 bank = 0x3f; //((addr & 0xe000) == 0xe000 if((addr & 0xe000) == 0x6000) bank = prg_bank[0]; if((addr & 0xe000) == 0x8000) bank = prg_bank[1]; if((addr & 0xe000) == 0xa000) bank = prg_bank[2]; if((addr & 0xe000) == 0xc000) bank = prg_bank[3]; bool ram_enable = bank & 0x80; bool ram_select = bank & 0x40; bank &= 0x3f; if(ram_select) { if(ram_enable == false) return cpu.mdr(); return prgram.data[addr & 0x1fff]; } addr = (bank << 13) | (addr & 0x1fff); return prgrom.read(addr); } void prg_write(unsigned addr, uint8 data) { if((addr & 0xe000) == 0x6000) { prgram.data[addr & 0x1fff] = data; } if(addr == 0x8000) { mmu_port = data & 0x0f; } if(addr == 0xa000) { switch(mmu_port) { case 0: chr_bank[0] = data; break; case 1: chr_bank[1] = data; break; case 2: chr_bank[2] = data; break; case 3: chr_bank[3] = data; break; case 4: chr_bank[4] = data; break; case 5: chr_bank[5] = data; break; case 6: chr_bank[6] = data; break; case 7: chr_bank[7] = data; break; case 8: prg_bank[0] = data; break; case 9: prg_bank[1] = data; break; case 10: prg_bank[2] = data; break; case 11: prg_bank[3] = data; break; case 12: mirror = data & 3; break; case 13: irq_enable = data & 0x80; irq_counter_enable = data & 0x01; if(irq_enable == 0) cpu.set_irq_line(0); break; case 14: irq_counter = (irq_counter & 0xff00) | (data << 0); break; case 15: irq_counter = (irq_counter & 0x00ff) | (data << 8); break; } } if(addr == 0xc000) { apu_port = data & 0x0f; } if(addr == 0xe000) { switch(apu_port) { case 0: pulse[0].frequency = (pulse[0].frequency & 0xff00) | (data << 0); break; case 1: pulse[0].frequency = (pulse[0].frequency & 0x00ff) | (data << 8); break; case 2: pulse[1].frequency = (pulse[1].frequency & 0xff00) | (data << 0); break; case 3: pulse[1].frequency = (pulse[1].frequency & 0x00ff) | (data << 8); break; case 4: pulse[2].frequency = (pulse[2].frequency & 0xff00) | (data << 0); break; case 5: pulse[2].frequency = (pulse[2].frequency & 0x00ff) | (data << 8); break; case 7: pulse[0].disable = data & 0x01; pulse[1].disable = data & 0x02; pulse[2].disable = data & 0x04; break; case 8: pulse[0].volume = data & 0x0f; break; case 9: pulse[1].volume = data & 0x0f; break; case 10: pulse[2].volume = data & 0x0f; break; } } } unsigned chr_addr(unsigned addr) { uint8 bank = (addr >> 10) & 7; return (chr_bank[bank] << 10) | (addr & 0x03ff); } unsigned ciram_addr(unsigned addr) { switch(mirror) { case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal case 2: return 0x0000 | (addr & 0x03ff); //first case 3: return 0x0400 | (addr & 0x03ff); //second } } uint8 chr_read(unsigned addr) { if(addr & 0x2000) return ppu.ciram_read(ciram_addr(addr)); return Board::chr_read(chr_addr(addr)); } void chr_write(unsigned addr, uint8 data) { if(addr & 0x2000) return ppu.ciram_write(ciram_addr(addr), data); return Board::chr_write(chr_addr(addr), data); } void power() { for(signed n = 0; n < 16; n++) { double volume = 1.0 / pow(2, 1.0 / 2 * (15 - n)); dac[n] = volume * 8192.0; } } void reset() { mmu_port = 0; apu_port = 0; for(auto &n : prg_bank) n = 0; for(auto &n : chr_bank) n = 0; mirror = 0; irq_enable = 0; irq_counter_enable = 0; irq_counter = 0; pulse[0].reset(); pulse[1].reset(); pulse[2].reset(); } void serialize(serializer &s) { Board::serialize(s); s.integer(mmu_port); s.integer(apu_port); s.array(prg_bank); s.array(chr_bank); s.integer(mirror); s.integer(irq_enable); s.integer(irq_counter_enable); s.integer(irq_counter); pulse[0].serialize(s); pulse[1].serialize(s); pulse[2].serialize(s); } Sunsoft5B(XML::Document &document) : Board(document) { } };