struct VRC6 : Chip { VRC6(Board& board) : Chip(board) { } struct Pulse { auto clock() -> void { if(--divider == 0) { divider = frequency + 1; cycle++; output = (mode == 1 || cycle > duty) ? volume : (uint4)0; } if(enable == false) output = 0; } auto serialize(serializer& s) -> void { s.integer(mode); s.integer(duty); s.integer(volume); s.integer(enable); s.integer(frequency); s.integer(divider); s.integer(cycle); s.integer(output); } bool mode; uint3 duty; uint4 volume; bool enable; uint12 frequency; uint12 divider; uint4 cycle; uint4 output; } pulse1, pulse2; struct Sawtooth { auto clock() -> void { if(--divider == 0) { divider = frequency + 1; if(++phase == 0) { accumulator += rate; if(++stage == 7) { stage = 0; accumulator = 0; } } } output = accumulator >> 3; if(enable == false) output = 0; } auto serialize(serializer& s) -> void { s.integer(rate); s.integer(enable); s.integer(frequency); s.integer(divider); s.integer(phase); s.integer(stage); s.integer(accumulator); s.integer(output); } uint6 rate; bool enable; uint12 frequency; uint12 divider; uint1 phase; uint3 stage; uint8 accumulator; uint5 output; } sawtooth; auto main() -> void { if(irqEnable) { if(irqMode == 0) { irqScalar -= 3; if(irqScalar <= 0) { irqScalar += 341; if(irqCounter == 0xff) { irqCounter = irqLatch; irqLine = 1; } else { irqCounter++; } } } if(irqMode == 1) { if(irqCounter == 0xff) { irqCounter = irqLatch; irqLine = 1; } else { irqCounter++; } } } cpu.irqLine(irqLine); pulse1.clock(); pulse2.clock(); sawtooth.clock(); int output = (pulse1.output + pulse2.output + sawtooth.output) << 7; apu.setSample(-output); tick(); } auto addrPRG(uint addr) const -> uint { if((addr & 0xc000) == 0x8000) return (prgBank[0] << 14) | (addr & 0x3fff); if((addr & 0xe000) == 0xc000) return (prgBank[1] << 13) | (addr & 0x1fff); if((addr & 0xe000) == 0xe000) return ( 0xff << 13) | (addr & 0x1fff); } auto addrCHR(uint addr) const -> uint { uint bank = chrBank[(addr >> 10) & 7]; return (bank << 10) | (addr & 0x03ff); } auto addrCIRAM(uint addr) const -> uint { switch(mirror) { case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring case 2: return 0x0000 | (addr & 0x03ff); //one-screen mirroring (first) case 3: return 0x0400 | (addr & 0x03ff); //one-screen mirroring (second) } } auto readRAM(uint addr) -> uint8 { return board.prgram.data[addr & 0x1fff]; } auto writeRAM(uint addr, uint8 data) -> void { board.prgram.data[addr & 0x1fff] = data; } auto writeIO(uint addr, uint8 data) -> void { switch(addr) { case 0x8000: case 0x8001: case 0x8002: case 0x8003: prgBank[0] = data; break; case 0x9000: pulse1.mode = data & 0x80; pulse1.duty = (data & 0x70) >> 4; pulse1.volume = data & 0x0f; break; case 0x9001: pulse1.frequency = (pulse1.frequency & 0x0f00) | ((data & 0xff) << 0); break; case 0x9002: pulse1.frequency = (pulse1.frequency & 0x00ff) | ((data & 0x0f) << 8); pulse1.enable = data & 0x80; break; case 0xa000: pulse2.mode = data & 0x80; pulse2.duty = (data & 0x70) >> 4; pulse2.volume = data & 0x0f; break; case 0xa001: pulse2.frequency = (pulse2.frequency & 0x0f00) | ((data & 0xff) << 0); break; case 0xa002: pulse2.frequency = (pulse2.frequency & 0x00ff) | ((data & 0x0f) << 8); pulse2.enable = data & 0x80; break; case 0xb000: sawtooth.rate = data & 0x3f; break; case 0xb001: sawtooth.frequency = (sawtooth.frequency & 0x0f00) | ((data & 0xff) << 0); break; case 0xb002: sawtooth.frequency = (sawtooth.frequency & 0x00ff) | ((data & 0x0f) << 8); sawtooth.enable = data & 0x80; break; case 0xb003: mirror = (data >> 2) & 3; break; case 0xc000: case 0xc001: case 0xc002: case 0xc003: prgBank[1] = data; break; case 0xd000: case 0xd001: case 0xd002: case 0xd003: chrBank[0 + (addr & 3)] = data; break; case 0xe000: case 0xe001: case 0xe002: case 0xe003: chrBank[4 + (addr & 3)] = data; break; case 0xf000: irqLatch = data; break; case 0xf001: irqMode = data & 0x04; irqEnable = data & 0x02; irqAcknowledge = data & 0x01; if(irqEnable) { irqCounter = irqLatch; irqScalar = 341; } irqLine = 0; break; case 0xf002: irqEnable = irqAcknowledge; irqLine = 0; break; } } auto power() -> void { } auto reset() -> void { prgBank[0] = 0; prgBank[1] = 0; chrBank[0] = 0; chrBank[1] = 0; chrBank[2] = 0; chrBank[3] = 0; chrBank[4] = 0; chrBank[5] = 0; chrBank[6] = 0; chrBank[7] = 0; mirror = 0; irqLatch = 0; irqMode = 0; irqEnable = 0; irqAcknowledge = 0; irqCounter = 0; irqScalar = 0; irqLine = 0; pulse1.mode = 0; pulse1.duty = 0; pulse1.volume = 0; pulse1.enable = 0; pulse1.frequency = 0; pulse1.divider = 1; pulse1.cycle = 0; pulse1.output = 0; pulse2.mode = 0; pulse2.duty = 0; pulse2.volume = 0; pulse2.enable = 0; pulse2.frequency = 0; pulse2.divider = 1; pulse2.cycle = 0; pulse2.output = 0; sawtooth.rate = 0; sawtooth.enable = 0; sawtooth.frequency = 0; sawtooth.divider = 1; sawtooth.phase = 0; sawtooth.stage = 0; sawtooth.accumulator = 0; sawtooth.output = 0; } auto serialize(serializer& s) -> void { pulse1.serialize(s); pulse2.serialize(s); sawtooth.serialize(s); s.array(prgBank); s.array(chrBank); s.integer(mirror); s.integer(irqLatch); s.integer(irqMode); s.integer(irqEnable); s.integer(irqAcknowledge); s.integer(irqCounter); s.integer(irqScalar); s.integer(irqLine); } uint8 prgBank[2]; uint8 chrBank[8]; uint2 mirror; uint8 irqLatch; bool irqMode; bool irqEnable; bool irqAcknowledge; uint8 irqCounter; int irqScalar; bool irqLine; };