auto CPU::wramAddress(uint16 addr) const -> uint { addr &= 0x1fff; if(addr < 0x1000) return addr; auto bank = status.wramBank + (status.wramBank == 0); return (bank * 0x1000) + (addr & 0x0fff); } auto CPU::joypPoll() -> void { uint button = 0, dpad = 0; button |= interface->inputPoll(0, 0, (uint)Input::Start) << 3; button |= interface->inputPoll(0, 0, (uint)Input::Select) << 2; button |= interface->inputPoll(0, 0, (uint)Input::B) << 1; button |= interface->inputPoll(0, 0, (uint)Input::A) << 0; dpad |= interface->inputPoll(0, 0, (uint)Input::Down) << 3; dpad |= interface->inputPoll(0, 0, (uint)Input::Up) << 2; dpad |= interface->inputPoll(0, 0, (uint)Input::Left) << 1; dpad |= interface->inputPoll(0, 0, (uint)Input::Right) << 0; if(system.revision() != System::Revision::SuperGameBoy) { //D-pad pivot makes it impossible to press opposing directions at the same time //however, Super Game Boy BIOS is able to set these bits together if(dpad & 4) dpad &= ~8; //disallow up+down if(dpad & 2) dpad &= ~1; //disallow left+right } status.joyp = 0x0f; if(status.p15 == 1 && status.p14 == 1) status.joyp -= status.mltReq; if(status.p15 == 0) status.joyp &= button ^ 0x0f; if(status.p14 == 0) status.joyp &= dpad ^ 0x0f; if(status.joyp != 0x0f) raise(Interrupt::Joypad); } auto CPU::readIO(uint16 addr) -> uint8 { if(addr >= 0xc000 && addr <= 0xfdff) return wram[wramAddress(addr)]; if(addr >= 0xff80 && addr <= 0xfffe) return hram[addr & 0x7f]; if(addr == 0xff00) { //JOYP joypPoll(); return 0xc0 | (status.p15 << 5) | (status.p14 << 4) | (status.joyp << 0); } if(addr == 0xff01) { //SB return 0x00; } if(addr == 0xff02) { //SC return (status.serialTransfer << 7) | 0x7e | (status.serialClock << 0); } if(addr == 0xff04) { //DIV return status.div >> 8; } if(addr == 0xff05) { //TIMA return status.tima; } if(addr == 0xff06) { //TMA return status.tma; } if(addr == 0xff07) { //TAC return 0xf8 | (status.timerEnable << 2) | (status.timerClock << 0); } if(addr == 0xff0f) { //IF return 0xe0 | (status.interruptRequestJoypad << 4) | (status.interruptRequestSerial << 3) | (status.interruptRequestTimer << 2) | (status.interruptRequestStat << 1) | (status.interruptRequestVblank << 0); } if(addr == 0xff4d) { //KEY1 return (status.speedDouble << 7); } if(addr == 0xff55) { //HDMA5 return (status.dmaCompleted << 7) | (((status.dmaLength / 16) - 1) & 0x7f); } if(addr == 0xff56) { //RP return 0x02; } if(addr == 0xff6c) { //??? return 0xfe | status.ff6c; } if(addr == 0xff70) { //SVBK return status.wramBank; } if(addr == 0xff72) { //??? return status.ff72; } if(addr == 0xff73) { //??? return status.ff73; } if(addr == 0xff74) { //??? return status.ff74; } if(addr == 0xff75) { //??? return 0x8f | status.ff75; } if(addr == 0xff76) { //??? return 0xff; } if(addr == 0xff77) { //??? return 0xff; } if(addr == 0xffff) { //IE return 0xe0 | (status.interruptEnableJoypad << 4) | (status.interruptEnableSerial << 3) | (status.interruptEnableTimer << 2) | (status.interruptEnableStat << 1) | (status.interruptEnableVblank << 0); } return 0xff; } auto CPU::writeIO(uint16 addr, uint8 data) -> void { if(addr >= 0xc000 && addr <= 0xfdff) { wram[wramAddress(addr)] = data; return; } if(addr >= 0xff80 && addr <= 0xfffe) { hram[addr & 0x7f] = data; return; } if(addr == 0xff00) { //JOYP status.p15 = data & 0x20; status.p14 = data & 0x10; interface->joypWrite(status.p15, status.p14); return; } if(addr == 0xff01) { //SB status.serialData = data; return; } if(addr == 0xff02) { //SC status.serialTransfer = data & 0x80; status.serialClock = data & 0x01; if(status.serialTransfer) status.serialBits = 8; return; } if(addr == 0xff04) { //DIV status.div = 0; return; } if(addr == 0xff05) { //TIMA status.tima = data; return; } if(addr == 0xff06) { //TMA status.tma = data; return; } if(addr == 0xff07) { //TAC status.timerEnable = data & 0x04; status.timerClock = data & 0x03; return; } if(addr == 0xff0f) { //IF status.interruptRequestJoypad = data & 0x10; status.interruptRequestSerial = data & 0x08; status.interruptRequestTimer = data & 0x04; status.interruptRequestStat = data & 0x02; status.interruptRequestVblank = data & 0x01; return; } if(addr == 0xff4d) { //KEY1 status.speedSwitch = data & 0x01; return; } if(addr == 0xff51) { //HDMA1 status.dmaSource = (status.dmaSource & 0x00ff) | (data << 8); return; } if(addr == 0xff52) { //HDMA2 status.dmaSource = (status.dmaSource & 0xff00) | (data & 0xf0); return; } if(addr == 0xff53) { //HDMA3 status.dmaTarget = (status.dmaTarget & 0x00ff) | (data << 8); return; } if(addr == 0xff54) { //HDMA4 status.dmaTarget = (status.dmaTarget & 0xff00) | (data & 0xf0); return; } if(addr == 0xff55) { //HDMA5 status.dmaMode = data & 0x80; status.dmaLength = ((data & 0x7f) + 1) * 16; status.dmaCompleted = !status.dmaMode; if(status.dmaMode == 0) { do { for(auto n : range(16)) { writeDMA(status.dmaTarget++, readDMA(status.dmaSource++)); } step(8 << status.speedDouble); status.dmaLength -= 16; } while(status.dmaLength); } return; } if(addr == 0xff56) { //RP return; } if(addr == 0xff6c) { //??? status.ff6c = data & 0x01; return; } if(addr == 0xff72) { //??? status.ff72 = data; return; } if(addr == 0xff73) { //??? status.ff73 = data; return; } if(addr == 0xff74) { //??? status.ff74 = data; return; } if(addr == 0xff75) { //??? status.ff75 = data & 0x70; return; } if(addr == 0xff70) { //SVBK status.wramBank = data & 0x07; return; } if(addr == 0xffff) { //IE status.interruptEnableJoypad = data & 0x10; status.interruptEnableSerial = data & 0x08; status.interruptEnableTimer = data & 0x04; status.interruptEnableStat = data & 0x02; status.interruptEnableVblank = data & 0x01; return; } }