auto CPU::pio() -> uint8 { return status.pio; } auto CPU::joylatch() -> bool { return status.joypad_strobe_latch; } //WMDATA auto CPU::mmio_r2180() -> uint8 { return bus.read(0x7e0000 | status.wram_addr++, regs.mdr); } //WMDATA auto CPU::mmio_w2180(uint8 data) -> void { bus.write(0x7e0000 | status.wram_addr++, data); } //WMADDL auto CPU::mmio_w2181(uint8 data) -> void { status.wram_addr = (status.wram_addr & 0x01ff00) | (data << 0); } //WMADDM auto CPU::mmio_w2182(uint8 data) -> void { status.wram_addr = (status.wram_addr & 0x0100ff) | (data << 8); } //WMADDH auto CPU::mmio_w2183(uint8 data) -> void { status.wram_addr = (status.wram_addr & 0x00ffff) | (data << 16); } //JOYSER0 //bit 0 is shared between JOYSER0 and JOYSER1, therefore //strobing $4016.d0 affects both controller port latches. //$4017 bit 0 writes are ignored. auto CPU::mmio_w4016(uint8 data) -> void { device.controllerPort1->latch(data & 1); device.controllerPort2->latch(data & 1); } //JOYSER0 //7-2 = MDR //1-0 = Joypad serial data auto CPU::mmio_r4016() -> uint8 { uint8 r = regs.mdr & 0xfc; r |= device.controllerPort1->data(); return r; } //JOYSER1 //7-5 = MDR //4-2 = Always 1 (pins are connected to GND) //1-0 = Joypad serial data auto CPU::mmio_r4017() -> uint8 { uint8 r = (regs.mdr & 0xe0) | 0x1c; r |= device.controllerPort2->data(); return r; } //NMITIMEN auto CPU::mmio_w4200(uint8 data) -> void { status.auto_joypad_poll = data & 1; nmitimen_update(data); } //WRIO auto CPU::mmio_w4201(uint8 data) -> void { if((status.pio & 0x80) && !(data & 0x80)) ppu.latch_counters(); status.pio = data; } //WRMPYA auto CPU::mmio_w4202(uint8 data) -> void { status.wrmpya = data; } //WRMPYB auto CPU::mmio_w4203(uint8 data) -> void { status.rdmpy = 0; if(alu.mpyctr || alu.divctr) return; status.wrmpyb = data; status.rddiv = (status.wrmpyb << 8) | status.wrmpya; alu.mpyctr = 8; //perform multiplication over the next eight cycles alu.shift = status.wrmpyb; } //WRDIVL auto CPU::mmio_w4204(uint8 data) -> void { status.wrdiva = (status.wrdiva & 0xff00) | (data << 0); } //WRDIVH auto CPU::mmio_w4205(uint8 data) -> void { status.wrdiva = (status.wrdiva & 0x00ff) | (data << 8); } //WRDIVB auto CPU::mmio_w4206(uint8 data) -> void { status.rdmpy = status.wrdiva; if(alu.mpyctr || alu.divctr) return; status.wrdivb = data; alu.divctr = 16; //perform division over the next sixteen cycles alu.shift = status.wrdivb << 16; } //HTIMEL auto CPU::mmio_w4207(uint8 data) -> void { status.hirq_pos = (status.hirq_pos & 0x0100) | (data << 0); } //HTIMEH auto CPU::mmio_w4208(uint8 data) -> void { status.hirq_pos = (status.hirq_pos & 0x00ff) | (data << 8); } //VTIMEL auto CPU::mmio_w4209(uint8 data) -> void { status.virq_pos = (status.virq_pos & 0x0100) | (data << 0); } //VTIMEH auto CPU::mmio_w420a(uint8 data) -> void { status.virq_pos = (status.virq_pos & 0x00ff) | (data << 8); } //DMAEN auto CPU::mmio_w420b(uint8 data) -> void { for(unsigned i = 0; i < 8; i++) { channel[i].dma_enabled = data & (1 << i); } if(data) status.dma_pending = true; } //HDMAEN auto CPU::mmio_w420c(uint8 data) -> void { for(unsigned i = 0; i < 8; i++) { channel[i].hdma_enabled = data & (1 << i); } } //MEMSEL auto CPU::mmio_w420d(uint8 data) -> void { status.rom_speed = (data & 1 ? 6 : 8); } //RDNMI //7 = NMI acknowledge //6-4 = MDR //3-0 = CPU (5a22) version auto CPU::mmio_r4210() -> uint8 { uint8 r = (regs.mdr & 0x70); r |= (uint8)(rdnmi()) << 7; r |= (cpu_version & 0x0f); return r; } //TIMEUP //7 = IRQ acknowledge //6-0 = MDR auto CPU::mmio_r4211() -> uint8 { uint8 r = (regs.mdr & 0x7f); r |= (uint8)(timeup()) << 7; return r; } //HVBJOY //7 = VBLANK acknowledge //6 = HBLANK acknowledge //5-1 = MDR //0 = JOYPAD acknowledge auto CPU::mmio_r4212() -> uint8 { uint8 r = (regs.mdr & 0x3e); if(status.auto_joypad_active) r |= 0x01; if(hcounter() <= 2 || hcounter() >= 1096) r |= 0x40; //hblank if(vcounter() >= (ppu.overscan() == false ? 225 : 240)) r |= 0x80; //vblank return r; } //RDIO auto CPU::mmio_r4213() -> uint8 { return status.pio; } //RDDIVL auto CPU::mmio_r4214() -> uint8 { return status.rddiv >> 0; } //RDDIVH auto CPU::mmio_r4215() -> uint8 { return status.rddiv >> 8; } //RDMPYL auto CPU::mmio_r4216() -> uint8 { return status.rdmpy >> 0; } //RDMPYH auto CPU::mmio_r4217() -> uint8 { return status.rdmpy >> 8; } auto CPU::mmio_r4218() -> uint8 { return status.joy1 >> 0; } //JOY1L auto CPU::mmio_r4219() -> uint8 { return status.joy1 >> 8; } //JOY1H auto CPU::mmio_r421a() -> uint8 { return status.joy2 >> 0; } //JOY2L auto CPU::mmio_r421b() -> uint8 { return status.joy2 >> 8; } //JOY2H auto CPU::mmio_r421c() -> uint8 { return status.joy3 >> 0; } //JOY3L auto CPU::mmio_r421d() -> uint8 { return status.joy3 >> 8; } //JOY3H auto CPU::mmio_r421e() -> uint8 { return status.joy4 >> 0; } //JOY4L auto CPU::mmio_r421f() -> uint8 { return status.joy4 >> 8; } //JOY4H //DMAPx auto CPU::mmio_r43x0(uint8 i) -> uint8 { return (channel[i].direction << 7) | (channel[i].indirect << 6) | (channel[i].unused << 5) | (channel[i].reverse_transfer << 4) | (channel[i].fixed_transfer << 3) | (channel[i].transfer_mode << 0); } //BBADx auto CPU::mmio_r43x1(uint8 i) -> uint8 { return channel[i].dest_addr; } //A1TxL auto CPU::mmio_r43x2(uint8 i) -> uint8 { return channel[i].source_addr >> 0; } //A1TxH auto CPU::mmio_r43x3(uint8 i) -> uint8 { return channel[i].source_addr >> 8; } //A1Bx auto CPU::mmio_r43x4(uint8 i) -> uint8 { return channel[i].source_bank; } //DASxL //union { uint16 transfer_size; uint16 indirect_addr; }; auto CPU::mmio_r43x5(uint8 i) -> uint8 { return channel[i].transfer_size >> 0; } //DASxH //union { uint16 transfer_size; uint16 indirect_addr; }; auto CPU::mmio_r43x6(uint8 i) -> uint8 { return channel[i].transfer_size >> 8; } //DASBx auto CPU::mmio_r43x7(uint8 i) -> uint8 { return channel[i].indirect_bank; } //A2AxL auto CPU::mmio_r43x8(uint8 i) -> uint8 { return channel[i].hdma_addr >> 0; } //A2AxH auto CPU::mmio_r43x9(uint8 i) -> uint8 { return channel[i].hdma_addr >> 8; } //NTRLx auto CPU::mmio_r43xa(uint8 i) -> uint8 { return channel[i].line_counter; } //??? auto CPU::mmio_r43xb(uint8 i) -> uint8 { return channel[i].unknown; } //DMAPx auto CPU::mmio_w43x0(uint8 i, uint8 data) -> void { channel[i].direction = data & 0x80; channel[i].indirect = data & 0x40; channel[i].unused = data & 0x20; channel[i].reverse_transfer = data & 0x10; channel[i].fixed_transfer = data & 0x08; channel[i].transfer_mode = data & 0x07; } //DDBADx auto CPU::mmio_w43x1(uint8 i, uint8 data) -> void { channel[i].dest_addr = data; } //A1TxL auto CPU::mmio_w43x2(uint8 i, uint8 data) -> void { channel[i].source_addr = (channel[i].source_addr & 0xff00) | (data << 0); } //A1TxH auto CPU::mmio_w43x3(uint8 i, uint8 data) -> void { channel[i].source_addr = (channel[i].source_addr & 0x00ff) | (data << 8); } //A1Bx auto CPU::mmio_w43x4(uint8 i, uint8 data) -> void { channel[i].source_bank = data; } //DASxL //union { uint16 transfer_size; uint16 indirect_addr; }; auto CPU::mmio_w43x5(uint8 i, uint8 data) -> void { channel[i].transfer_size = (channel[i].transfer_size & 0xff00) | (data << 0); } //DASxH //union { uint16 transfer_size; uint16 indirect_addr; }; auto CPU::mmio_w43x6(uint8 i, uint8 data) -> void { channel[i].transfer_size = (channel[i].transfer_size & 0x00ff) | (data << 8); } //DASBx auto CPU::mmio_w43x7(uint8 i, uint8 data) -> void { channel[i].indirect_bank = data; } //A2AxL auto CPU::mmio_w43x8(uint8 i, uint8 data) -> void { channel[i].hdma_addr = (channel[i].hdma_addr & 0xff00) | (data << 0); } //A2AxH auto CPU::mmio_w43x9(uint8 i, uint8 data) -> void { channel[i].hdma_addr = (channel[i].hdma_addr & 0x00ff) | (data << 8); } //NTRLx auto CPU::mmio_w43xa(uint8 i, uint8 data) -> void { channel[i].line_counter = data; } //??? auto CPU::mmio_w43xb(uint8 i, uint8 data) -> void { channel[i].unknown = data; } auto CPU::mmio_power() -> void { } auto CPU::mmio_reset() -> void { //$2140-217f for(auto& port : status.port) port = 0x00; //$2181-$2183 status.wram_addr = 0x000000; //$4016-$4017 status.joypad_strobe_latch = 0; status.joypad1_bits = ~0; status.joypad2_bits = ~0; //$4200 status.nmi_enabled = false; status.hirq_enabled = false; status.virq_enabled = false; status.auto_joypad_poll = false; //$4201 status.pio = 0xff; //$4202-$4203 status.wrmpya = 0xff; status.wrmpyb = 0xff; //$4204-$4206 status.wrdiva = 0xffff; status.wrdivb = 0xff; //$4207-$420a status.hirq_pos = 0x01ff; status.virq_pos = 0x01ff; //$420d status.rom_speed = 8; //$4214-$4217 status.rddiv = 0x0000; status.rdmpy = 0x0000; //$4218-$421f status.joy1 = 0x0000; status.joy2 = 0x0000; status.joy3 = 0x0000; status.joy4 = 0x0000; //ALU alu.mpyctr = 0; alu.divctr = 0; alu.shift = 0; } auto CPU::mmio_read(uint addr, uint8 data) -> uint8 { addr &= 0xffff; //APU if((addr & 0xffc0) == 0x2140) { //$2140-$217f synchronizeSMP(); return smp.portRead(addr); } //DMA if((addr & 0xff80) == 0x4300) { //$4300-$437f uint i = (addr >> 4) & 7; switch(addr & 0xf) { case 0x0: return mmio_r43x0(i); case 0x1: return mmio_r43x1(i); case 0x2: return mmio_r43x2(i); case 0x3: return mmio_r43x3(i); case 0x4: return mmio_r43x4(i); case 0x5: return mmio_r43x5(i); case 0x6: return mmio_r43x6(i); case 0x7: return mmio_r43x7(i); case 0x8: return mmio_r43x8(i); case 0x9: return mmio_r43x9(i); case 0xa: return mmio_r43xa(i); case 0xb: return mmio_r43xb(i); case 0xc: return regs.mdr; //unmapped case 0xd: return regs.mdr; //unmapped case 0xe: return regs.mdr; //unmapped case 0xf: return mmio_r43xb(i); //mirror of $43xb } } switch(addr) { case 0x2180: return mmio_r2180(); case 0x4016: return mmio_r4016(); case 0x4017: return mmio_r4017(); case 0x4210: return mmio_r4210(); case 0x4211: return mmio_r4211(); case 0x4212: return mmio_r4212(); case 0x4213: return mmio_r4213(); case 0x4214: return mmio_r4214(); case 0x4215: return mmio_r4215(); case 0x4216: return mmio_r4216(); case 0x4217: return mmio_r4217(); case 0x4218: return mmio_r4218(); case 0x4219: return mmio_r4219(); case 0x421a: return mmio_r421a(); case 0x421b: return mmio_r421b(); case 0x421c: return mmio_r421c(); case 0x421d: return mmio_r421d(); case 0x421e: return mmio_r421e(); case 0x421f: return mmio_r421f(); } return data; } auto CPU::mmio_write(uint addr, uint8 data) -> void { addr &= 0xffff; //APU if((addr & 0xffc0) == 0x2140) { //$2140-$217f synchronizeSMP(); portWrite(addr, data); return; } //DMA if((addr & 0xff80) == 0x4300) { //$4300-$437f uint i = (addr >> 4) & 7; switch(addr & 0xf) { case 0x0: mmio_w43x0(i, data); return; case 0x1: mmio_w43x1(i, data); return; case 0x2: mmio_w43x2(i, data); return; case 0x3: mmio_w43x3(i, data); return; case 0x4: mmio_w43x4(i, data); return; case 0x5: mmio_w43x5(i, data); return; case 0x6: mmio_w43x6(i, data); return; case 0x7: mmio_w43x7(i, data); return; case 0x8: mmio_w43x8(i, data); return; case 0x9: mmio_w43x9(i, data); return; case 0xa: mmio_w43xa(i, data); return; case 0xb: mmio_w43xb(i, data); return; case 0xc: return; //unmapped case 0xd: return; //unmapped case 0xe: return; //unmapped case 0xf: mmio_w43xb(i, data); return; //mirror of $43xb } } switch(addr) { case 0x2180: mmio_w2180(data); return; case 0x2181: mmio_w2181(data); return; case 0x2182: mmio_w2182(data); return; case 0x2183: mmio_w2183(data); return; case 0x4016: mmio_w4016(data); return; case 0x4017: return; //unmapped case 0x4200: mmio_w4200(data); return; case 0x4201: mmio_w4201(data); return; case 0x4202: mmio_w4202(data); return; case 0x4203: mmio_w4203(data); return; case 0x4204: mmio_w4204(data); return; case 0x4205: mmio_w4205(data); return; case 0x4206: mmio_w4206(data); return; case 0x4207: mmio_w4207(data); return; case 0x4208: mmio_w4208(data); return; case 0x4209: mmio_w4209(data); return; case 0x420a: mmio_w420a(data); return; case 0x420b: mmio_w420b(data); return; case 0x420c: mmio_w420c(data); return; case 0x420d: mmio_w420d(data); return; } }