auto CPU::iwram_read(uint mode, uint32 addr) -> uint32 { if(regs.memory.control.disable) return cpu.pipeline.fetch.instruction; if(mode & Word) return iwram_read(Half, addr &~ 2) << 0 | iwram_read(Half, addr | 2) << 16; if(mode & Half) return iwram_read(Byte, addr &~ 1) << 0 | iwram_read(Byte, addr | 1) << 8; return iwram[addr & 0x7fff]; } auto CPU::iwram_write(uint mode, uint32 addr, uint32 word) -> void { if(regs.memory.control.disable) return; if(mode & Word) { iwram_write(Half, addr &~2, word >> 0); iwram_write(Half, addr | 2, word >> 16); return; } if(mode & Half) { iwram_write(Byte, addr &~1, word >> 0); iwram_write(Byte, addr | 1, word >> 8); return; } iwram[addr & 0x7fff] = word; } auto CPU::ewram_read(uint mode, uint32 addr) -> uint32 { if(regs.memory.control.disable) return cpu.pipeline.fetch.instruction; if(!regs.memory.control.ewram) return iwram_read(mode, addr); if(mode & Word) return ewram_read(Half, addr &~ 2) << 0 | ewram_read(Half, addr | 2) << 16; if(mode & Half) return ewram_read(Byte, addr &~ 1) << 0 | ewram_read(Byte, addr | 1) << 8; return ewram[addr & 0x3ffff]; } auto CPU::ewram_write(uint mode, uint32 addr, uint32 word) -> void { if(regs.memory.control.disable) return; if(!regs.memory.control.ewram) return iwram_write(mode, addr, word); if(mode & Word) { ewram_write(Half, addr &~2, word >> 0); ewram_write(Half, addr | 2, word >> 16); return; } if(mode & Half) { ewram_write(Byte, addr &~1, word >> 0); ewram_write(Byte, addr | 1, word >> 8); return; } ewram[addr & 0x3ffff] = word; }