//SUNSOFT-5B struct Sunsoft5B : Board { Sunsoft5B(Markup::Node& document) : Board(document) { } struct Pulse { auto clock() -> void { if(--counter == 0) { counter = frequency << 4; duty ^= 1; } output = duty ? volume : (uint4)0; if(disable) output = 0; } auto power() -> void { disable = 1; frequency = 1; volume = 0; counter = 0; duty = 0; output = 0; } auto serialize(serializer& s) -> void { s.integer(disable); s.integer(frequency); s.integer(volume); s.integer(counter); s.integer(duty); s.integer(output); } bool disable; uint12 frequency; uint4 volume; uint16 counter; //12-bit countdown + 4-bit phase uint1 duty; uint4 output; } pulse[3]; auto main() -> void { if(irqCounterEnable) { if(--irqCounter == 0xffff) { cpu.irqLine(irqEnable); } } pulse[0].clock(); pulse[1].clock(); pulse[2].clock(); int16 output = dac[pulse[0].output] + dac[pulse[1].output] + dac[pulse[2].output]; apu.setSample(-output); tick(); } auto readPRG(uint addr) -> uint8 { if(addr < 0x6000) return cpu.mdr(); uint8 bank = 0x3f; //((addr & 0xe000) == 0xe000 if((addr & 0xe000) == 0x6000) bank = prgBank[0]; if((addr & 0xe000) == 0x8000) bank = prgBank[1]; if((addr & 0xe000) == 0xa000) bank = prgBank[2]; if((addr & 0xe000) == 0xc000) bank = prgBank[3]; bool ramEnable = bank & 0x80; bool ramSelect = bank & 0x40; bank &= 0x3f; if(ramSelect) { if(!ramEnable) return cpu.mdr(); return prgram.data[addr & 0x1fff]; } addr = (bank << 13) | (addr & 0x1fff); return prgrom.read(addr); } auto writePRG(uint addr, uint8 data) -> void { if((addr & 0xe000) == 0x6000) { prgram.data[addr & 0x1fff] = data; } if(addr == 0x8000) { mmuPort = data & 0x0f; } if(addr == 0xa000) { switch(mmuPort) { case 0: chrBank[0] = data; break; case 1: chrBank[1] = data; break; case 2: chrBank[2] = data; break; case 3: chrBank[3] = data; break; case 4: chrBank[4] = data; break; case 5: chrBank[5] = data; break; case 6: chrBank[6] = data; break; case 7: chrBank[7] = data; break; case 8: prgBank[0] = data; break; case 9: prgBank[1] = data; break; case 10: prgBank[2] = data; break; case 11: prgBank[3] = data; break; case 12: mirror = data & 3; break; case 13: irqEnable = data & 0x80; irqCounterEnable = data & 0x01; if(irqEnable == 0) cpu.irqLine(0); break; case 14: irqCounter = (irqCounter & 0xff00) | (data << 0); break; case 15: irqCounter = (irqCounter & 0x00ff) | (data << 8); break; } } if(addr == 0xc000) { apuPort = data & 0x0f; } if(addr == 0xe000) { switch(apuPort) { case 0: pulse[0].frequency = (pulse[0].frequency & 0xff00) | (data << 0); break; case 1: pulse[0].frequency = (pulse[0].frequency & 0x00ff) | (data << 8); break; case 2: pulse[1].frequency = (pulse[1].frequency & 0xff00) | (data << 0); break; case 3: pulse[1].frequency = (pulse[1].frequency & 0x00ff) | (data << 8); break; case 4: pulse[2].frequency = (pulse[2].frequency & 0xff00) | (data << 0); break; case 5: pulse[2].frequency = (pulse[2].frequency & 0x00ff) | (data << 8); break; case 7: pulse[0].disable = data & 0x01; pulse[1].disable = data & 0x02; pulse[2].disable = data & 0x04; break; case 8: pulse[0].volume = data & 0x0f; break; case 9: pulse[1].volume = data & 0x0f; break; case 10: pulse[2].volume = data & 0x0f; break; } } } auto addrCHR(uint addr) -> uint { uint8 bank = (addr >> 10) & 7; return (chrBank[bank] << 10) | (addr & 0x03ff); } auto addrCIRAM(uint addr) -> uint { switch(mirror) { case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal case 2: return 0x0000 | (addr & 0x03ff); //first case 3: return 0x0400 | (addr & 0x03ff); //second } } auto readCHR(uint addr) -> uint8 { if(addr & 0x2000) return ppu.readCIRAM(addrCIRAM(addr)); return Board::readCHR(addrCHR(addr)); } auto writeCHR(uint addr, uint8 data) -> void { if(addr & 0x2000) return ppu.writeCIRAM(addrCIRAM(addr), data); return Board::writeCHR(addrCHR(addr), data); } auto power() -> void { for(int n : range(16)) { double volume = 1.0 / pow(2, 1.0 / 2 * (15 - n)); dac[n] = volume * 8192.0; } mmuPort = 0; apuPort = 0; for(auto& n : prgBank) n = 0; for(auto& n : chrBank) n = 0; mirror = 0; irqEnable = 0; irqCounterEnable = 0; irqCounter = 0; pulse[0].power(); pulse[1].power(); pulse[2].power(); } auto serialize(serializer& s) -> void { Board::serialize(s); s.integer(mmuPort); s.integer(apuPort); s.array(prgBank); s.array(chrBank); s.integer(mirror); s.integer(irqEnable); s.integer(irqCounterEnable); s.integer(irqCounter); pulse[0].serialize(s); pulse[1].serialize(s); pulse[2].serialize(s); } uint4 mmuPort; uint4 apuPort; uint8 prgBank[4]; uint8 chrBank[8]; uint2 mirror; bool irqEnable; bool irqCounterEnable; uint16 irqCounter; int16 dac[16]; };