#include #include #include #include #include extern "C" auto XvShmCreateImage(Display*, XvPortID, int, char*, int, int, XShmSegmentInfo*) -> XvImage*; struct VideoXVideo : VideoDriver { VideoXVideo& self = *this; VideoXVideo(Video& super) : VideoDriver(super) {} ~VideoXVideo() { terminate(); } auto create() -> bool override { VideoDriver::exclusive = true; VideoDriver::shader = "Blur"; return initialize(); } auto driver() -> string override { return "XVideo"; } auto ready() -> bool override { return _ready; } auto hasFullScreen() -> bool override { return true; } auto hasMonitor() -> bool override { return true; } auto hasContext() -> bool override { return true; } auto hasBlocking() -> bool override { return true; } auto hasFormats() -> vector override { return _formatNames; } auto setFullScreen(bool fullScreen) -> bool override { return initialize(); } auto setMonitor(string monitor) -> bool override { return initialize(); } auto setContext(uintptr context) -> bool override { return initialize(); } auto setBlocking(bool blocking) -> bool override { bool result = false; Display* display = XOpenDisplay(nullptr); Atom atom = XInternAtom(display, "XV_SYNC_TO_VBLANK", true); if(atom != None && _port >= 0) { XvSetPortAttribute(display, _port, atom, self.blocking); result = true; } XCloseDisplay(display); return result; } auto setFormat(string format) -> bool override { return initialize(); } auto clear() -> void override { memory::fill(_buffer, _bufferWidth * _bufferHeight); //clear twice in case video is double buffered ... output(); output(); } auto size(uint& width, uint& height) -> void override { if(self.fullScreen) { width = _monitorWidth; height = _monitorHeight; } else { XWindowAttributes parent; XGetWindowAttributes(_display, _parent, &parent); width = parent.width; height = parent.height; } } auto acquire(uint32_t*& data, uint& pitch, uint width, uint height) -> bool override { if(width != _width || height != _height) resize(_width = width, _height = height); pitch = _bufferWidth * 4; return data = _buffer; } auto release() -> void override { } auto output(uint width = 0, uint height = 0) -> void override { XWindowAttributes window; XGetWindowAttributes(_display, _window, &window); XWindowAttributes parent; XGetWindowAttributes(_display, _parent, &parent); if(window.width != parent.width || window.height != parent.height) { XResizeWindow(_display, _window, parent.width, parent.height); } uint viewportX = 0; uint viewportY = 0; uint viewportWidth = parent.width; uint viewportHeight = parent.height; if(self.fullScreen) { viewportX = _monitorX; viewportY = _monitorY; viewportWidth = _monitorWidth; viewportHeight = _monitorHeight; } auto& name = _formatName; if(name == "RGB24" ) renderRGB24 (_width, _height); if(name == "RGB24P") renderRGB24P(_width, _height); if(name == "RGB16" ) renderRGB16 (_width, _height); if(name == "RGB15" ) renderRGB15 (_width, _height); if(name == "UYVY" ) renderUYVY (_width, _height); if(name == "YUY2" ) renderYUY2 (_width, _height); if(name == "YV12" ) renderYV12 (_width, _height); if(name == "I420" ) renderI420 (_width, _height); if(!width) width = viewportWidth; if(!height) height = viewportHeight; int x = viewportX + ((int)viewportWidth - (int)width) / 2; int y = viewportY + ((int)viewportHeight - (int)height) / 2; XvShmPutImage(_display, _port, _window, _gc, _image, 0, 0, _width, _height, x, y, width, height, true); } auto poll() -> void override { while(XPending(_display)) { XEvent event; XNextEvent(_display, &event); if(event.type == Expose) { XWindowAttributes attributes; XGetWindowAttributes(_display, _window, &attributes); super.doUpdate(attributes.width, attributes.height); } } } private: auto initialize() -> bool { terminate(); if(!self.fullScreen && !self.context) return false; _display = XOpenDisplay(nullptr); _screen = DefaultScreen(_display); if(!XShmQueryExtension(_display)) { print("XVideo: XShm extension not found.\n"); return false; } //find an appropriate Xv port _port = -1; int depth = 0; int visualID = 0; XvAdaptorInfo* adaptorInfo = nullptr; uint adaptorCount = 0; XvQueryAdaptors(_display, DefaultRootWindow(_display), &adaptorCount, &adaptorInfo); for(uint n : range(adaptorCount)) { //find adaptor that supports both input (memory->drawable) and image (drawable->screen) masks if(adaptorInfo[n].num_formats < 1) continue; if(!(adaptorInfo[n].type & XvInputMask)) continue; if(!(adaptorInfo[n].type & XvImageMask)) continue; _port = adaptorInfo[n].base_id; depth = adaptorInfo[n].formats->depth; visualID = adaptorInfo[n].formats->visual_id; break; } XvFreeAdaptorInfo(adaptorInfo); if(_port < 0) { print("XVideo: failed to find valid XvPort.\n"); return false; } XVisualInfo visualTemplate; visualTemplate.visualid = visualID; visualTemplate.screen = _screen; visualTemplate.depth = depth; visualTemplate.visual = 0; int visualMatches = 0; auto visualInfo = XGetVisualInfo(_display, VisualIDMask | VisualScreenMask | VisualDepthMask, &visualTemplate, &visualMatches); if(visualMatches < 1 || !visualInfo->visual) { if(visualInfo) XFree(visualInfo); print("XVideo: unable to find Xv-compatible visual.\n"); return false; } _parent = self.fullScreen ? RootWindow(_display, _screen) : (Window)self.context; //create child window to attach to parent window. //this is so that even if parent window visual depth doesn't match Xv visual //(common with composited windows), Xv can still render to child window. XWindowAttributes windowAttributes{}; XGetWindowAttributes(_display, _parent, &windowAttributes); auto monitor = Video::monitor(self.monitor); _monitorX = monitor.x; _monitorY = monitor.y; _monitorWidth = monitor.width; _monitorHeight = monitor.height; _colormap = XCreateColormap(_display, _parent, visualInfo->visual, AllocNone); XSetWindowAttributes attributes{}; attributes.border_pixel = 0; attributes.colormap = _colormap; attributes.override_redirect = self.fullScreen; _window = XCreateWindow(_display, _parent, 0, 0, windowAttributes.width, windowAttributes.height, 0, depth, InputOutput, visualInfo->visual, CWBorderPixel | CWColormap | CWOverrideRedirect, &attributes); XSelectInput(_display, _window, ExposureMask); XFree(visualInfo); XSetWindowBackground(_display, _window, 0); XMapWindow(_display, _window); _gc = XCreateGC(_display, _window, 0, 0); int attributeCount = 0; auto attributeList = XvQueryPortAttributes(_display, _port, &attributeCount); for(auto n : range(attributeCount)) { if(string{attributeList[n].name} == "XV_AUTOPAINT_COLORKEY") { //set colorkey to auto paint, so that Xv video output is always visible Atom atom = XInternAtom(_display, "XV_AUTOPAINT_COLORKEY", true); if(atom != None) XvSetPortAttribute(_display, _port, atom, 1); } } XFree(attributeList); queryAvailableFormats(); if(!_formatNames) { print("XVideo: unable to find a supported image format.\n"); return false; } if(auto match = _formatNames.find(self.format)) { _formatID = _formatIDs[match()]; _formatName = _formatNames[match()]; } else { _formatID = _formatIDs[0]; _formatName = _formatNames[0]; self.format = _formatName; } _ready = true; initializeTables(); resize(_width = 256, _height = 256); clear(); return true; } auto terminate() -> void { _ready = false; if(_image) { XShmDetach(_display, &_shmInfo); shmdt(_shmInfo.shmaddr); shmctl(_shmInfo.shmid, IPC_RMID, nullptr); XFree(_image); _image = nullptr; } if(_gc) { XFreeGC(_display, _gc); _gc = 0; } if(_window) { XUnmapWindow(_display, _window); _window = 0; } if(_colormap) { XFreeColormap(_display, _colormap); _colormap = 0; } if(_display) { XCloseDisplay(_display); _display = nullptr; } delete[] _buffer, _buffer = nullptr, _bufferWidth = 0, _bufferHeight = 0; delete[] _ytable, _ytable = nullptr; delete[] _utable, _utable = nullptr; delete[] _vtable, _vtable = nullptr; } auto queryAvailableFormats() -> void { auto& ids = _formatIDs; auto& names = _formatNames; ids.reset(); names.reset(); int count = 0; auto array = XvListImageFormats(_display, _port, &count); for(uint sort : range(8)) { for(uint n : range(count)) { auto id = array[n].id; auto type = array[n].type; auto format = array[n].format; auto depth = array[n].bits_per_pixel; auto redMask = array[n].red_mask; auto order = array[n].component_order; string components; for(uint n : range(4)) if(char c = order[n]) components.append(c); if(type == XvRGB) { if(sort == 0 && depth == 32) ids.append(id), names.append("RGB24"); if(sort == 1 && depth == 24) ids.append(id), names.append("RGB24P"); if(sort == 2 && depth <= 16 && redMask == 0xf800) ids.append(id), names.append("RGB16"); if(sort == 3 && depth <= 16 && redMask == 0x7c00) ids.append(id), names.append("RGB15"); } if(type == XvYUV && format == XvPacked) { if(sort == 4 && depth == 16 && components == "UYVY") ids.append(id), names.append("UYVY"); if(sort == 5 && depth == 16 && components == "YUYV") ids.append(id), names.append("YUY2"); } if(type == XvYUV && format == XvPlanar) { if(sort == 6 && depth == 12 && components == "YVU" ) ids.append(id), names.append("YV12"); if(sort == 7 && depth == 12 && components == "YUV" ) ids.append(id), names.append("I420"); } } } free(array); } auto resize(uint width, uint height) -> void { if(_bufferWidth >= width && _bufferHeight >= height) return; _bufferWidth = max(width, _bufferWidth); _bufferHeight = max(height, _bufferHeight); //must round to be evenly divisible by 4 if(uint round = _bufferWidth & 3) _bufferWidth += 4 - round; if(uint round = _bufferHeight & 3) _bufferHeight += 4 - round; _bufferWidth = bit::round(_bufferWidth); _bufferHeight = bit::round(_bufferHeight); if(_image) { XShmDetach(_display, &_shmInfo); shmdt(_shmInfo.shmaddr); shmctl(_shmInfo.shmid, IPC_RMID, nullptr); XFree(_image); } _image = XvShmCreateImage(_display, _port, _formatID, 0, _bufferWidth, _bufferHeight, &_shmInfo); _shmInfo.shmid = shmget(IPC_PRIVATE, _image->data_size, IPC_CREAT | 0777); _shmInfo.shmaddr = _image->data = (char*)shmat(_shmInfo.shmid, 0, 0); _shmInfo.readOnly = false; XShmAttach(_display, &_shmInfo); delete[] _buffer; _buffer = new uint32_t[_bufferWidth * _bufferHeight]; } auto renderRGB24(uint width, uint height) -> void { for(uint y : range(height)) { auto input = (const uint32_t*)_buffer + y * width; auto output = (uint32_t*)_image->data + y * (_image->pitches[0] >> 2); for(uint x : range(width)) { uint32_t p = *input++; *output++ = p; } } } auto renderRGB24P(uint width, uint height) -> void { for(uint y : range(height)) { auto input = (const uint32_t*)_buffer + y * width; auto output = (uint8_t*)_image->data + y * _image->pitches[0]; for(uint x : range(width)) { uint32_t p = *input++; *output++ = p >> 0; *output++ = p >> 8; *output++ = p >> 16; } } } auto renderRGB16(uint width, uint height) -> void { for(uint y : range(height)) { auto input = (const uint32_t*)_buffer + y * width; auto output = (uint16_t*)_image->data + y * (_image->pitches[0] >> 1); for(uint x : range(width)) { uint32_t p = toRGB16(*input++); *output++ = p; } input += _bufferWidth - width; output += _bufferWidth - width; } } auto renderRGB15(uint width, uint height) -> void { for(uint y : range(height)) { auto input = (const uint32_t*)_buffer + y * width; auto output = (uint16_t*)_image->data + y * (_image->pitches[0] >> 1); for(uint x : range(width)) { uint32_t p = toRGB15(*input++); *output++ = p; } } } auto renderUYVY(uint width, uint height) -> void { for(uint y : range(height)) { auto input = (const uint32_t*)_buffer + y * width; auto output = (uint16_t*)_image->data + y * (_image->pitches[0] >> 1); for(uint x : range(width >> 1)) { uint32_t p0 = toRGB16(*input++); uint32_t p1 = toRGB16(*input++); *output++ = _ytable[p0] << 8 | ((_utable[p0] + _utable[p1]) >> 1) << 0; *output++ = _ytable[p1] << 8 | ((_vtable[p0] + _vtable[p1]) >> 1) << 0; } } } auto renderYUY2(uint width, uint height) -> void { for(uint y : range(height)) { auto input = (const uint32_t*)_buffer + y * width; auto output = (uint16_t*)_image->data + y * (_image->pitches[0] >> 1); for(uint x : range(width >> 1)) { uint32_t p0 = toRGB16(*input++); uint32_t p1 = toRGB16(*input++); *output++ = ((_utable[p0] + _utable[p1]) >> 1) << 8 | _ytable[p0] << 0; *output++ = ((_vtable[p0] + _vtable[p1]) >> 1) << 8 | _ytable[p1] << 0; } } } auto renderYV12(uint width, uint height) -> void { for(uint y : range(height >> 1)) { auto input0 = (const uint32_t*)_buffer + (2 * y + 0) * width; auto input1 = (const uint32_t*)_buffer + (2 * y + 1) * width; auto youtput0 = (uint16_t*)_image->data + (_image->offsets[0] >> 1) + (2 * y + 0) * (_image->pitches[0] >> 1); auto youtput1 = (uint16_t*)_image->data + (_image->offsets[0] >> 1) + (2 * y + 1) * (_image->pitches[0] >> 1); auto voutput = (uint8_t*)_image->data + _image->offsets[1] + y * _image->pitches[1]; auto uoutput = (uint8_t*)_image->data + _image->offsets[2] + y * _image->pitches[2]; for(uint x : range(width >> 1)) { uint16_t p0 = toRGB16(*input0++); uint16_t p1 = toRGB16(*input0++); uint16_t p2 = toRGB16(*input1++); uint16_t p3 = toRGB16(*input1++); *youtput0++ = _ytable[p0] << 0 | _ytable[p1] << 8; *youtput1++ = _ytable[p2] << 0 | _ytable[p3] << 8; *voutput++ = (_vtable[p0] + _vtable[p1] + _vtable[p2] + _vtable[p3]) >> 2; *uoutput++ = (_utable[p0] + _utable[p1] + _utable[p2] + _utable[p3]) >> 2; } } } auto renderI420(uint width, uint height) -> void { for(uint y : range(height >> 1)) { auto input0 = (const uint32_t*)_buffer + (2 * y + 0) * width; auto input1 = (const uint32_t*)_buffer + (2 * y + 1) * width; auto youtput0 = (uint16_t*)_image->data + (_image->offsets[0] >> 1) + (2 * y + 0) * (_image->pitches[0] >> 1); auto youtput1 = (uint16_t*)_image->data + (_image->offsets[0] >> 1) + (2 * y + 1) * (_image->pitches[0] >> 1); auto uoutput = (uint8_t*)_image->data + _image->offsets[1] + y * _image->pitches[1]; auto voutput = (uint8_t*)_image->data + _image->offsets[2] + y * _image->pitches[2]; for(uint x : range(width >> 1)) { uint16_t p0 = toRGB16(*input0++); uint16_t p1 = toRGB16(*input0++); uint16_t p2 = toRGB16(*input1++); uint16_t p3 = toRGB16(*input1++); *youtput0++ = _ytable[p0] << 0 | _ytable[p1] << 8; *youtput1++ = _ytable[p2] << 0 | _ytable[p3] << 8; *uoutput++ = (_utable[p0] + _utable[p1] + _utable[p2] + _utable[p3]) >> 2; *voutput++ = (_vtable[p0] + _vtable[p1] + _vtable[p2] + _vtable[p3]) >> 2; } } } inline auto toRGB15(uint32_t rgb32) const -> uint16_t { return ((rgb32 >> 9) & 0x7c00) + ((rgb32 >> 6) & 0x03e0) + ((rgb32 >> 3) & 0x001f); } inline auto toRGB16(uint32_t rgb32) const -> uint16_t { return ((rgb32 >> 8) & 0xf800) + ((rgb32 >> 5) & 0x07e0) + ((rgb32 >> 3) & 0x001f); } auto initializeTables() -> void { _ytable = new uint8_t[65536]; _utable = new uint8_t[65536]; _vtable = new uint8_t[65536]; for(uint n : range(65536)) { //extract RGB565 color data from i uint8_t r = (n >> 11) & 31, g = (n >> 5) & 63, b = (n) & 31; r = (r << 3) | (r >> 2); //R5->R8 g = (g << 2) | (g >> 4); //G6->G8 b = (b << 3) | (b >> 2); //B5->B8 //ITU-R Recommendation BT.601 //double lr = 0.299, lg = 0.587, lb = 0.114; int y = int( +(double(r) * 0.257) + (double(g) * 0.504) + (double(b) * 0.098) + 16.0 ); int u = int( -(double(r) * 0.148) - (double(g) * 0.291) + (double(b) * 0.439) + 128.0 ); int v = int( +(double(r) * 0.439) - (double(g) * 0.368) - (double(b) * 0.071) + 128.0 ); //ITU-R Recommendation BT.709 //double lr = 0.2126, lg = 0.7152, lb = 0.0722; //int y = int( double(r) * lr + double(g) * lg + double(b) * lb ); //int u = int( (double(b) - y) / (2.0 - 2.0 * lb) + 128.0 ); //int v = int( (double(r) - y) / (2.0 - 2.0 * lr) + 128.0 ); _ytable[n] = y < 0 ? 0 : y > 255 ? 255 : y; _utable[n] = u < 0 ? 0 : u > 255 ? 255 : u; _vtable[n] = v < 0 ? 0 : v > 255 ? 255 : v; } } bool _ready = false; uint _width = 0; uint _height = 0; uint32_t* _buffer = nullptr; uint _bufferWidth = 0; uint _bufferHeight = 0; uint8_t* _ytable = nullptr; uint8_t* _utable = nullptr; uint8_t* _vtable = nullptr; Display* _display = nullptr; uint _monitorX = 0; uint _monitorY = 0; uint _monitorWidth = 0; uint _monitorHeight = 0; uint _screen = 0; GC _gc = 0; Window _parent = 0; Window _window = 0; Colormap _colormap = 0; XShmSegmentInfo _shmInfo; int _port = -1; XvImage* _image = nullptr; vector _formatIDs; vector _formatNames; int _formatID = 0; string _formatName; };