struct VRC6 : Chip { VRC6(Board& board) : Chip(board) { } struct Pulse { auto clock() -> void { if(--divider == 0) { divider = frequency + 1; cycle++; output = (mode == 1 || cycle > duty) ? volume : (uint4)0; } if(enable == false) output = 0; } auto serialize(serializer& s) -> void { s.integer(mode); s.integer(duty); s.integer(volume); s.integer(enable); s.integer(frequency); s.integer(divider); s.integer(cycle); s.integer(output); } bool mode; uint3 duty; uint4 volume; bool enable; uint12 frequency; uint12 divider; uint4 cycle; uint4 output; } pulse1, pulse2; struct Sawtooth { auto clock() -> void { if(--divider == 0) { divider = frequency + 1; if(++phase == 0) { accumulator += rate; if(++stage == 7) { stage = 0; accumulator = 0; } } } output = accumulator >> 3; if(enable == false) output = 0; } auto serialize(serializer& s) -> void { s.integer(rate); s.integer(enable); s.integer(frequency); s.integer(divider); s.integer(phase); s.integer(stage); s.integer(accumulator); s.integer(output); } uint6 rate; bool enable; uint12 frequency; uint12 divider; uint1 phase; uint3 stage; uint8 accumulator; uint5 output; } sawtooth; auto main() -> void { if(irq_enable) { if(irq_mode == 0) { irq_scalar -= 3; if(irq_scalar <= 0) { irq_scalar += 341; if(irq_counter == 0xff) { irq_counter = irq_latch; irq_line = 1; } else { irq_counter++; } } } if(irq_mode == 1) { if(irq_counter == 0xff) { irq_counter = irq_latch; irq_line = 1; } else { irq_counter++; } } } cpu.set_irq_line(irq_line); pulse1.clock(); pulse2.clock(); sawtooth.clock(); int output = (pulse1.output + pulse2.output + sawtooth.output) << 7; apu.set_sample(-output); tick(); } auto prg_addr(uint addr) const -> uint { if((addr & 0xc000) == 0x8000) return (prg_bank[0] << 14) | (addr & 0x3fff); if((addr & 0xe000) == 0xc000) return (prg_bank[1] << 13) | (addr & 0x1fff); if((addr & 0xe000) == 0xe000) return ( 0xff << 13) | (addr & 0x1fff); } auto chr_addr(uint addr) const -> uint { uint bank = chr_bank[(addr >> 10) & 7]; return (bank << 10) | (addr & 0x03ff); } auto ciram_addr(uint addr) const -> uint { switch(mirror) { case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring case 2: return 0x0000 | (addr & 0x03ff); //one-screen mirroring (first) case 3: return 0x0400 | (addr & 0x03ff); //one-screen mirroring (second) } } auto ram_read(uint addr) -> uint8 { return board.prgram.data[addr & 0x1fff]; } auto ram_write(uint addr, uint8 data) -> void { board.prgram.data[addr & 0x1fff] = data; } auto reg_write(uint addr, uint8 data) -> void { switch(addr) { case 0x8000: case 0x8001: case 0x8002: case 0x8003: prg_bank[0] = data; break; case 0x9000: pulse1.mode = data & 0x80; pulse1.duty = (data & 0x70) >> 4; pulse1.volume = data & 0x0f; break; case 0x9001: pulse1.frequency = (pulse1.frequency & 0x0f00) | ((data & 0xff) << 0); break; case 0x9002: pulse1.frequency = (pulse1.frequency & 0x00ff) | ((data & 0x0f) << 8); pulse1.enable = data & 0x80; break; case 0xa000: pulse2.mode = data & 0x80; pulse2.duty = (data & 0x70) >> 4; pulse2.volume = data & 0x0f; break; case 0xa001: pulse2.frequency = (pulse2.frequency & 0x0f00) | ((data & 0xff) << 0); break; case 0xa002: pulse2.frequency = (pulse2.frequency & 0x00ff) | ((data & 0x0f) << 8); pulse2.enable = data & 0x80; break; case 0xb000: sawtooth.rate = data & 0x3f; break; case 0xb001: sawtooth.frequency = (sawtooth.frequency & 0x0f00) | ((data & 0xff) << 0); break; case 0xb002: sawtooth.frequency = (sawtooth.frequency & 0x00ff) | ((data & 0x0f) << 8); sawtooth.enable = data & 0x80; break; case 0xb003: mirror = (data >> 2) & 3; break; case 0xc000: case 0xc001: case 0xc002: case 0xc003: prg_bank[1] = data; break; case 0xd000: case 0xd001: case 0xd002: case 0xd003: chr_bank[0 + (addr & 3)] = data; break; case 0xe000: case 0xe001: case 0xe002: case 0xe003: chr_bank[4 + (addr & 3)] = data; break; case 0xf000: irq_latch = data; break; case 0xf001: irq_mode = data & 0x04; irq_enable = data & 0x02; irq_acknowledge = data & 0x01; if(irq_enable) { irq_counter = irq_latch; irq_scalar = 341; } irq_line = 0; break; case 0xf002: irq_enable = irq_acknowledge; irq_line = 0; break; } } auto power() -> void { } auto reset() -> void { prg_bank[0] = 0; prg_bank[1] = 0; chr_bank[0] = 0; chr_bank[1] = 0; chr_bank[2] = 0; chr_bank[3] = 0; chr_bank[4] = 0; chr_bank[5] = 0; chr_bank[6] = 0; chr_bank[7] = 0; mirror = 0; irq_latch = 0; irq_mode = 0; irq_enable = 0; irq_acknowledge = 0; irq_counter = 0; irq_scalar = 0; irq_line = 0; pulse1.mode = 0; pulse1.duty = 0; pulse1.volume = 0; pulse1.enable = 0; pulse1.frequency = 0; pulse1.divider = 1; pulse1.cycle = 0; pulse1.output = 0; pulse2.mode = 0; pulse2.duty = 0; pulse2.volume = 0; pulse2.enable = 0; pulse2.frequency = 0; pulse2.divider = 1; pulse2.cycle = 0; pulse2.output = 0; sawtooth.rate = 0; sawtooth.enable = 0; sawtooth.frequency = 0; sawtooth.divider = 1; sawtooth.phase = 0; sawtooth.stage = 0; sawtooth.accumulator = 0; sawtooth.output = 0; } auto serialize(serializer& s) -> void { pulse1.serialize(s); pulse2.serialize(s); sawtooth.serialize(s); s.array(prg_bank); s.array(chr_bank); s.integer(mirror); s.integer(irq_latch); s.integer(irq_mode); s.integer(irq_enable); s.integer(irq_acknowledge); s.integer(irq_counter); s.integer(irq_scalar); s.integer(irq_line); } uint8 prg_bank[2]; uint8 chr_bank[8]; uint2 mirror; uint8 irq_latch; bool irq_mode; bool irq_enable; bool irq_acknowledge; uint8 irq_counter; int irq_scalar; bool irq_line; };