#version 150 ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA in vec4 position; in vec2 texCoord; out Vertex { vec2 vTexCoord; vec2 src_tex_uv_wrap; vec2 tile_uv_wrap; vec2 resize_magnification_scale; vec2 src_dxdy; vec2 tile_size_uv; vec2 input_tiles_per_texture; }; uniform vec4 targetSize; uniform vec4 sourceSize[]; uniform int phase; // USER SETTINGS BLOCK // #define crt_gamma 2.500000 #define lcd_gamma 2.200000 #define levels_contrast 1.0 #define halation_weight 0.0 #define diffusion_weight 0.075 #define bloom_underestimate_levels 0.8 #define bloom_excess 0.000000 #define beam_min_sigma 0.020000 #define beam_max_sigma 0.300000 #define beam_spot_power 0.330000 #define beam_min_shape 2.000000 #define beam_max_shape 4.000000 #define beam_shape_power 0.250000 #define beam_horiz_filter 0.000000 #define beam_horiz_sigma 0.35 #define beam_horiz_linear_rgb_weight 1.000000 #define convergence_offset_x_r -0.000000 #define convergence_offset_x_g 0.000000 #define convergence_offset_x_b 0.000000 #define convergence_offset_y_r 0.000000 #define convergence_offset_y_g -0.000000 #define convergence_offset_y_b 0.000000 #define mask_type 1.000000 #define mask_sample_mode_desired 0.000000 #define mask_specify_num_triads 0.000000 #define mask_triad_size_desired 3.000000 #define mask_num_triads_desired 480.000000 #define aa_subpixel_r_offset_x_runtime -0.0 #define aa_subpixel_r_offset_y_runtime 0.000000 #define aa_cubic_c 0.500000 #define aa_gauss_sigma 0.500000 #define geom_mode_runtime 0.000000 #define geom_radius 2.000000 #define geom_view_dist 2.000000 #define geom_tilt_angle_x 0.000000 #define geom_tilt_angle_y 0.000000 #define geom_aspect_ratio_x 432.000000 #define geom_aspect_ratio_y 329.000000 #define geom_overscan_x 1.000000 #define geom_overscan_y 1.000000 #define border_size 0.015 #define border_darkness 2.0 #define border_compress 2.500000 #define interlace_bff 0.000000 #define interlace_1080i 0.000000 // END USER SETTINGS BLOCK // // compatibility macros for transparently converting HLSLisms into GLSLisms #define mul(a,b) (b*a) #define lerp(a,b,c) mix(a,b,c) #define saturate(c) clamp(c, 0.0, 1.0) #define frac(x) (fract(x)) #define float2 vec2 #define float3 vec3 #define float4 vec4 #define bool2 bvec2 #define bool3 bvec3 #define bool4 bvec4 #define float2x2 mat2x2 #define float3x3 mat3x3 #define float4x4 mat4x4 #define float4x3 mat4x3 #define float2x4 mat2x4 #define IN params #define texture_size sourceSize[0].xy #define video_size sourceSize[0].xy #define output_size targetSize.xy #define frame_count phase #define static #define inline #define const #define fmod(x,y) mod(x,y) #define ddx(c) dFdx(c) #define ddy(c) dFdy(c) #define atan2(x,y) atan(y,x) #define rsqrt(c) inversesqrt(c) #define input_texture source[0] #if defined(GL_ES) #define COMPAT_PRECISION mediump #else #define COMPAT_PRECISION #endif #if __VERSION__ >= 130 #define COMPAT_TEXTURE texture #else #define COMPAT_TEXTURE texture2D #endif ///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H //////////////////////////// END USER-SETTINGS ////////////////////////// //#include "derived-settings-and-constants.h" //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H #define DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////// DESCRIPTION //////////////////////////////// // These macros and constants can be used across the whole codebase. // Unlike the values in user-settings.cgh, end users shouldn't modify these. /////////////////////////////// BEGIN INCLUDES /////////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H ///////////////////////////// END USER-SETTINGS //////////////////////////// //#include "user-cgp-constants.h" ///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// #ifndef USER_CGP_CONSTANTS_H #define USER_CGP_CONSTANTS_H // IMPORTANT: // These constants MUST be set appropriately for the settings in crt-royale.cgp // (or whatever related .cgp file you're using). If they aren't, you're likely // to get artifacts, the wrong phosphor mask size, etc. I wish these could be // set directly in the .cgp file to make things easier, but...they can't. // PASS SCALES AND RELATED CONSTANTS: // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of // this shader: One does a viewport-scale bloom, and the other skips it. The // latter benefits from a higher bloom_approx_scale_x, so save both separately: static const float bloom_approx_size_x = 320.0; static const float bloom_approx_size_x_for_fake = 400.0; // Copy the viewport-relative scales of the phosphor mask resize passes // (MASK_RESIZE and the pass immediately preceding it): static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: static const float geom_max_aspect_ratio = 4.0/3.0; // PHOSPHOR MASK TEXTURE CONSTANTS: // Set the following constants to reflect the properties of the phosphor mask // texture named in crt-royale.cgp. The shader optionally resizes a mask tile // based on user settings, then repeats a single tile until filling the screen. // The shader must know the input texture size (default 64x64), and to manually // resize, it must also know the horizontal triads per tile (default 8). static const float2 mask_texture_small_size = float2(64.0, 64.0); static const float2 mask_texture_large_size = float2(512.0, 512.0); static const float mask_triads_per_tile = 8.0; // We need the average brightness of the phosphor mask to compensate for the // dimming it causes. The following four values are roughly correct for the // masks included with the shader. Update the value for any LUT texture you // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). //#define PHOSPHOR_MASK_GRILLE14 static const float mask_grille14_avg_color = 50.6666666/255.0; // TileableLinearApertureGrille14Wide7d33Spacing*.png // TileableLinearApertureGrille14Wide10And6Spacing*.png static const float mask_grille15_avg_color = 53.0/255.0; // TileableLinearApertureGrille15Wide6d33Spacing*.png // TileableLinearApertureGrille15Wide8And5d5Spacing*.png static const float mask_slot_avg_color = 46.0/255.0; // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png static const float mask_shadow_avg_color = 41.0/255.0; // TileableLinearShadowMask*.png // TileableLinearShadowMaskEDP*.png #ifdef PHOSPHOR_MASK_GRILLE14 static const float mask_grille_avg_color = mask_grille14_avg_color; #else static const float mask_grille_avg_color = mask_grille15_avg_color; #endif #endif // USER_CGP_CONSTANTS_H ////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// /////////////////////////////// FIXED SETTINGS /////////////////////////////// // Avoid dividing by zero; using a macro overloads for float, float2, etc.: #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. #ifndef SIMULATE_CRT_ON_LCD #define SIMULATE_CRT_ON_LCD #endif // Manually tiling a manually resized texture creates texture coord derivative // discontinuities and confuses anisotropic filtering, causing discolored tile // seams in the phosphor mask. Workarounds: // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. // b.) "Tile flat twice" requires drawing two full tiles without border padding // to the resized mask FBO, and it's incompatible with same-pass curvature. // (Same-pass curvature isn't used but could be in the future...maybe.) // c.) "Fix discontinuities" requires derivatives and drawing one tile with // border padding to the resized mask FBO, but it works with same-pass // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. // Precedence: a, then, b, then c (if multiple strategies are #defined). #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen // Also, manually resampling the phosphor mask is slightly blurrier with // anisotropic filtering. (Resampling with mipmapping is even worse: It // creates artifacts, but only with the fully bloomed shader.) The difference // is subtle with small triads, but you can fix it for a small cost. //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD ////////////////////////////// DERIVED SETTINGS ////////////////////////////// // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be // #defined by either user-settings.h or a wrapper .cg that #includes the // current .cg pass.) #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE #undef PHOSPHOR_MASK_MANUALLY_RESIZE #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is // inferior in most cases, so replace 2.0 with 0.0: static const float bloom_approx_filter = bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; #else static const float bloom_approx_filter = bloom_approx_filter_static; #endif // Disable slow runtime paths if static parameters are used. Most of these // won't be a problem anyway once the params are disabled, but some will. #ifndef RUNTIME_SHADER_PARAMS_ENABLE #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA #endif #ifdef RUNTIME_ANTIALIAS_WEIGHTS #undef RUNTIME_ANTIALIAS_WEIGHTS #endif #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #endif #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #endif #ifdef RUNTIME_GEOMETRY_TILT #undef RUNTIME_GEOMETRY_TILT #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // Make tex2Dbias a backup for tex2Dlod for wider compatibility. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif // Rule out unavailable anisotropic compatibility strategies: #ifndef DRIVERS_ALLOW_DERIVATIVES #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #ifndef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #endif #ifdef ANTIALIAS_DISABLE_ANISOTROPIC #undef ANTIALIAS_DISABLE_ANISOTROPIC #endif #endif #ifndef DRIVERS_ALLOW_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif // Prioritize anisotropic tiling compatibility strategies by performance and // disable unused strategies. This concentrates all the nesting in one place. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with // flat texture coords in the same pass, but that's all we use. #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #endif #endif // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can // reduce some #ifdef nesting in the next section by essentially OR'ing them: #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif // Prioritize anisotropic resampling compatibility strategies the same way: #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// // If we can use the large mipmapped LUT without mipmapping artifacts, we // should: It gives us more options for using fewer samples. #ifdef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD // TODO: Take advantage of this! #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT static const float2 mask_resize_src_lut_size = mask_texture_large_size; #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to // main_fragment, or a static alias of one of the above. This makes it hard // to select the phosphor mask at runtime: We can't even assign to a uniform // global in the vertex shader or select a sampler2D in the vertex shader and // pass it to the fragment shader (even with explicit TEXUNIT# bindings), // because it just gives us the input texture or a black screen. However, we // can get around these limitations by calling tex2D three times with different // uniform samplers (or resizing the phosphor mask three times altogether). // With dynamic branches, we can process only one of these branches on top of // quickly discarding fragments we don't need (cgc seems able to overcome // limigations around dependent texture fetches inside of branches). Without // dynamic branches, we have to process every branch for every fragment...which // is slower. Runtime sampling mode selection is slower without dynamic // branches as well. Let the user's static #defines decide if it's worth it. #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #else #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // We need to render some minimum number of tiles in the resize passes. // We need at least 1.0 just to repeat a single tile, and we need extra // padding beyond that for anisotropic filtering, discontinuitity fixing, // antialiasing, same-pass curvature (not currently used), etc. First // determine how many border texels and tiles we need, based on how the result // will be sampled: #ifdef GEOMETRY_EARLY static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; // Most antialiasing filters have a base radius of 4.0 pixels: static const float max_aa_base_pixel_border = 4.0 + max_subpixel_offset; #else static const float max_aa_base_pixel_border = 0.0; #endif // Anisotropic filtering adds about 0.5 to the pixel border: #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; #else static const float max_aniso_pixel_border = max_aa_base_pixel_border; #endif // Fixing discontinuities adds 1.0 more to the pixel border: #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; #else static const float max_tiled_pixel_border = max_aniso_pixel_border; #endif // Convert the pixel border to an integer texel border. Assume same-pass // curvature about triples the texel frequency: #ifdef GEOMETRY_EARLY static const float max_mask_texel_border = ceil(max_tiled_pixel_border * 3.0); #else static const float max_mask_texel_border = ceil(max_tiled_pixel_border); #endif // Convert the texel border to a tile border using worst-case assumptions: static const float max_mask_tile_border = max_mask_texel_border/ (mask_min_allowed_triad_size * mask_triads_per_tile); // Finally, set the number of resized tiles to render to MASK_RESIZE, and set // the starting texel (inside borders) for sampling it. #ifndef GEOMETRY_EARLY #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // Special case: Render two tiles without borders. Anisotropic // filtering doesn't seem to be a problem here. static const float mask_resize_num_tiles = 1.0 + 1.0; static const float mask_start_texels = 0.0; #else static const float mask_resize_num_tiles = 1.0 + 2.0 * max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif #else static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of // mask_resize_viewport_scale. This limits the maximum final triad size. // Estimate the minimum number of triads we can split the screen into in each // dimension (we'll be as correct as mask_resize_viewport_scale is): static const float mask_resize_num_triads = mask_resize_num_tiles * mask_triads_per_tile; static const float2 min_allowed_viewport_triads = float2(mask_resize_num_triads) / mask_resize_viewport_scale; //////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// static const float pi = 3.141592653589; // We often want to find the location of the previous texel, e.g.: // const float2 curr_texel = uv * texture_size; // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); // const float2 prev_texel_uv = prev_texel / texture_size; // However, many GPU drivers round incorrectly around exact texel locations. // We need to subtract a little less than 0.5 before flooring, and some GPU's // require this value to be farther from 0.5 than others; define it here. // const float2 prev_texel = // floor(curr_texel - float2(under_half)) + float2(0.5); static const float under_half = 0.4995; #endif // DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS //////////////////////////// //#include "bind-shader-h" ///////////////////////////// BEGIN BIND-SHADER-PARAMS //////////////////////////// #ifndef BIND_SHADER_PARAMS_H #define BIND_SHADER_PARAMS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// /////////////////////////////// BEGIN INCLUDES /////////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H ///////////////////////////// END USER-SETTINGS //////////////////////////// //#include "derived-settings-and-constants.h" ///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H #define DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////// DESCRIPTION //////////////////////////////// // These macros and constants can be used across the whole codebase. // Unlike the values in user-settings.cgh, end users shouldn't modify these. /////////////////////////////// BEGIN INCLUDES /////////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H ///////////////////////////// END USER-SETTINGS //////////////////////////// //#include "user-cgp-constants.h" ///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// #ifndef USER_CGP_CONSTANTS_H #define USER_CGP_CONSTANTS_H // IMPORTANT: // These constants MUST be set appropriately for the settings in crt-royale.cgp // (or whatever related .cgp file you're using). If they aren't, you're likely // to get artifacts, the wrong phosphor mask size, etc. I wish these could be // set directly in the .cgp file to make things easier, but...they can't. // PASS SCALES AND RELATED CONSTANTS: // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of // this shader: One does a viewport-scale bloom, and the other skips it. The // latter benefits from a higher bloom_approx_scale_x, so save both separately: static const float bloom_approx_size_x = 320.0; static const float bloom_approx_size_x_for_fake = 400.0; // Copy the viewport-relative scales of the phosphor mask resize passes // (MASK_RESIZE and the pass immediately preceding it): static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: static const float geom_max_aspect_ratio = 4.0/3.0; // PHOSPHOR MASK TEXTURE CONSTANTS: // Set the following constants to reflect the properties of the phosphor mask // texture named in crt-royale.cgp. The shader optionally resizes a mask tile // based on user settings, then repeats a single tile until filling the screen. // The shader must know the input texture size (default 64x64), and to manually // resize, it must also know the horizontal triads per tile (default 8). static const float2 mask_texture_small_size = float2(64.0, 64.0); static const float2 mask_texture_large_size = float2(512.0, 512.0); static const float mask_triads_per_tile = 8.0; // We need the average brightness of the phosphor mask to compensate for the // dimming it causes. The following four values are roughly correct for the // masks included with the shader. Update the value for any LUT texture you // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). //#define PHOSPHOR_MASK_GRILLE14 static const float mask_grille14_avg_color = 50.6666666/255.0; // TileableLinearApertureGrille14Wide7d33Spacing*.png // TileableLinearApertureGrille14Wide10And6Spacing*.png static const float mask_grille15_avg_color = 53.0/255.0; // TileableLinearApertureGrille15Wide6d33Spacing*.png // TileableLinearApertureGrille15Wide8And5d5Spacing*.png static const float mask_slot_avg_color = 46.0/255.0; // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png static const float mask_shadow_avg_color = 41.0/255.0; // TileableLinearShadowMask*.png // TileableLinearShadowMaskEDP*.png #ifdef PHOSPHOR_MASK_GRILLE14 static const float mask_grille_avg_color = mask_grille14_avg_color; #else static const float mask_grille_avg_color = mask_grille15_avg_color; #endif #endif // USER_CGP_CONSTANTS_H ////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// /////////////////////////////// FIXED SETTINGS /////////////////////////////// // Avoid dividing by zero; using a macro overloads for float, float2, etc.: #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. #ifndef SIMULATE_CRT_ON_LCD #define SIMULATE_CRT_ON_LCD #endif // Manually tiling a manually resized texture creates texture coord derivative // discontinuities and confuses anisotropic filtering, causing discolored tile // seams in the phosphor mask. Workarounds: // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. // b.) "Tile flat twice" requires drawing two full tiles without border padding // to the resized mask FBO, and it's incompatible with same-pass curvature. // (Same-pass curvature isn't used but could be in the future...maybe.) // c.) "Fix discontinuities" requires derivatives and drawing one tile with // border padding to the resized mask FBO, but it works with same-pass // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. // Precedence: a, then, b, then c (if multiple strategies are #defined). #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen // Also, manually resampling the phosphor mask is slightly blurrier with // anisotropic filtering. (Resampling with mipmapping is even worse: It // creates artifacts, but only with the fully bloomed shader.) The difference // is subtle with small triads, but you can fix it for a small cost. //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD ////////////////////////////// DERIVED SETTINGS ////////////////////////////// // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be // #defined by either user-settings.h or a wrapper .cg that #includes the // current .cg pass.) #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE #undef PHOSPHOR_MASK_MANUALLY_RESIZE #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is // inferior in most cases, so replace 2.0 with 0.0: static const float bloom_approx_filter = bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; #else static const float bloom_approx_filter = bloom_approx_filter_static; #endif // Disable slow runtime paths if static parameters are used. Most of these // won't be a problem anyway once the params are disabled, but some will. #ifndef RUNTIME_SHADER_PARAMS_ENABLE #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA #endif #ifdef RUNTIME_ANTIALIAS_WEIGHTS #undef RUNTIME_ANTIALIAS_WEIGHTS #endif #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #endif #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #endif #ifdef RUNTIME_GEOMETRY_TILT #undef RUNTIME_GEOMETRY_TILT #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // Make tex2Dbias a backup for tex2Dlod for wider compatibility. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif // Rule out unavailable anisotropic compatibility strategies: #ifndef DRIVERS_ALLOW_DERIVATIVES #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #ifndef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #endif #ifdef ANTIALIAS_DISABLE_ANISOTROPIC #undef ANTIALIAS_DISABLE_ANISOTROPIC #endif #endif #ifndef DRIVERS_ALLOW_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif // Prioritize anisotropic tiling compatibility strategies by performance and // disable unused strategies. This concentrates all the nesting in one place. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with // flat texture coords in the same pass, but that's all we use. #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #endif #endif // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can // reduce some #ifdef nesting in the next section by essentially OR'ing them: #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif // Prioritize anisotropic resampling compatibility strategies the same way: #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// // If we can use the large mipmapped LUT without mipmapping artifacts, we // should: It gives us more options for using fewer samples. #ifdef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD // TODO: Take advantage of this! #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT static const float2 mask_resize_src_lut_size = mask_texture_large_size; #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to // main_fragment, or a static alias of one of the above. This makes it hard // to select the phosphor mask at runtime: We can't even assign to a uniform // global in the vertex shader or select a sampler2D in the vertex shader and // pass it to the fragment shader (even with explicit TEXUNIT# bindings), // because it just gives us the input texture or a black screen. However, we // can get around these limitations by calling tex2D three times with different // uniform samplers (or resizing the phosphor mask three times altogether). // With dynamic branches, we can process only one of these branches on top of // quickly discarding fragments we don't need (cgc seems able to overcome // limigations around dependent texture fetches inside of branches). Without // dynamic branches, we have to process every branch for every fragment...which // is slower. Runtime sampling mode selection is slower without dynamic // branches as well. Let the user's static #defines decide if it's worth it. #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #else #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // We need to render some minimum number of tiles in the resize passes. // We need at least 1.0 just to repeat a single tile, and we need extra // padding beyond that for anisotropic filtering, discontinuitity fixing, // antialiasing, same-pass curvature (not currently used), etc. First // determine how many border texels and tiles we need, based on how the result // will be sampled: #ifdef GEOMETRY_EARLY static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; // Most antialiasing filters have a base radius of 4.0 pixels: static const float max_aa_base_pixel_border = 4.0 + max_subpixel_offset; #else static const float max_aa_base_pixel_border = 0.0; #endif // Anisotropic filtering adds about 0.5 to the pixel border: #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; #else static const float max_aniso_pixel_border = max_aa_base_pixel_border; #endif // Fixing discontinuities adds 1.0 more to the pixel border: #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; #else static const float max_tiled_pixel_border = max_aniso_pixel_border; #endif // Convert the pixel border to an integer texel border. Assume same-pass // curvature about triples the texel frequency: #ifdef GEOMETRY_EARLY static const float max_mask_texel_border = ceil(max_tiled_pixel_border * 3.0); #else static const float max_mask_texel_border = ceil(max_tiled_pixel_border); #endif // Convert the texel border to a tile border using worst-case assumptions: static const float max_mask_tile_border = max_mask_texel_border/ (mask_min_allowed_triad_size * mask_triads_per_tile); // Finally, set the number of resized tiles to render to MASK_RESIZE, and set // the starting texel (inside borders) for sampling it. #ifndef GEOMETRY_EARLY #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // Special case: Render two tiles without borders. Anisotropic // filtering doesn't seem to be a problem here. static const float mask_resize_num_tiles = 1.0 + 1.0; static const float mask_start_texels = 0.0; #else static const float mask_resize_num_tiles = 1.0 + 2.0 * max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif #else static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of // mask_resize_viewport_scale. This limits the maximum final triad size. // Estimate the minimum number of triads we can split the screen into in each // dimension (we'll be as correct as mask_resize_viewport_scale is): static const float mask_resize_num_triads = mask_resize_num_tiles * mask_triads_per_tile; static const float2 min_allowed_viewport_triads = float2(mask_resize_num_triads) / mask_resize_viewport_scale; //////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// static const float pi = 3.141592653589; // We often want to find the location of the previous texel, e.g.: // const float2 curr_texel = uv * texture_size; // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); // const float2 prev_texel_uv = prev_texel / texture_size; // However, many GPU drivers round incorrectly around exact texel locations. // We need to subtract a little less than 0.5 before flooring, and some GPU's // require this value to be farther from 0.5 than others; define it here. // const float2 prev_texel = // floor(curr_texel - float2(under_half)) + float2(0.5); static const float under_half = 0.4995; #endif // DERIVED_SETTINGS_AND_CONSTANTS_H //////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ///////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// // Override some parameters for gamma-management.h and tex2Dantialias.h: #define OVERRIDE_DEVICE_GAMMA static const float gba_gamma = 3.5; // Irrelevant but necessary to define. #define ANTIALIAS_OVERRIDE_BASICS #define ANTIALIAS_OVERRIDE_PARAMETERS // Provide accessors for vector constants that pack scalar uniforms: inline float2 get_aspect_vector(const float geom_aspect_ratio) { // Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent // the absolute scale from affecting the uv-mapping for curvature: const float geom_clamped_aspect_ratio = min(geom_aspect_ratio, geom_max_aspect_ratio); const float2 geom_aspect = normalize(float2(geom_clamped_aspect_ratio, 1.0)); return geom_aspect; } inline float2 get_geom_overscan_vector() { return float2(geom_overscan_x, geom_overscan_y); } inline float2 get_geom_tilt_angle_vector() { return float2(geom_tilt_angle_x, geom_tilt_angle_y); } inline float3 get_convergence_offsets_x_vector() { return float3(convergence_offset_x_r, convergence_offset_x_g, convergence_offset_x_b); } inline float3 get_convergence_offsets_y_vector() { return float3(convergence_offset_y_r, convergence_offset_y_g, convergence_offset_y_b); } inline float2 get_convergence_offsets_r_vector() { return float2(convergence_offset_x_r, convergence_offset_y_r); } inline float2 get_convergence_offsets_g_vector() { return float2(convergence_offset_x_g, convergence_offset_y_g); } inline float2 get_convergence_offsets_b_vector() { return float2(convergence_offset_x_b, convergence_offset_y_b); } inline float2 get_aa_subpixel_r_offset() { #ifdef RUNTIME_ANTIALIAS_WEIGHTS #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // WARNING: THIS IS EXTREMELY EXPENSIVE. return float2(aa_subpixel_r_offset_x_runtime, aa_subpixel_r_offset_y_runtime); #else return aa_subpixel_r_offset_static; #endif #else return aa_subpixel_r_offset_static; #endif } // Provide accessors settings which still need "cooking:" inline float get_mask_amplify() { static const float mask_grille_amplify = 1.0/mask_grille_avg_color; static const float mask_slot_amplify = 1.0/mask_slot_avg_color; static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color; return mask_type < 0.5 ? mask_grille_amplify : mask_type < 1.5 ? mask_slot_amplify : mask_shadow_amplify; } inline float get_mask_sample_mode() { #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE return mask_sample_mode_desired; #else return clamp(mask_sample_mode_desired, 1.0, 2.0); #endif #else #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE return mask_sample_mode_static; #else return clamp(mask_sample_mode_static, 1.0, 2.0); #endif #endif } #endif // BIND_SHADER_PARAMS_H //////////////////////////// END BIND-SHADER-PARAMS /////////////////////////// ////////////////////////////////// INCLUDES ////////////////////////////////// //#include "phosphor-mask-resizing.h" //////////////////////// BEGIN PHOSPHOR-MASK-RESIZING //////////////////////// #ifndef PHOSPHOR_MASK_RESIZING_H #define PHOSPHOR_MASK_RESIZING_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ////////////////////////////////// INCLUDES ////////////////////////////////// //#include "../user-settings.h" //#include "derived-settings-and-constants.h" ///////////////////////////// CODEPATH SELECTION ///////////////////////////// // Choose a looping strategy based on what's allowed: // Dynamic loops not allowed: Use a flat static loop. // Dynamic loops accomodated: Coarsely branch around static loops. // Dynamic loops assumed allowed: Use a flat dynamic loop. #ifndef DRIVERS_ALLOW_DYNAMIC_BRANCHES #ifdef ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS #define BREAK_LOOPS_INTO_PIECES #else #define USE_SINGLE_STATIC_LOOP #endif #endif // No else needed: Dynamic loops assumed. ////////////////////////////////// CONSTANTS ///////////////////////////////// // The larger the resized tile, the fewer samples we'll need for downsizing. // See if we can get a static min tile size > mask_min_allowed_tile_size: static const float mask_min_allowed_tile_size = ceil( mask_min_allowed_triad_size * mask_triads_per_tile); static const float mask_min_expected_tile_size = mask_min_allowed_tile_size; // Limit the number of sinc resize taps by the maximum minification factor: static const float pi_over_lobes = pi/mask_sinc_lobes; static const float max_sinc_resize_samples_float = 2.0 * mask_sinc_lobes * mask_resize_src_lut_size.x/mask_min_expected_tile_size; // Vectorized loops sample in multiples of 4. Round up to be safe: static const float max_sinc_resize_samples_m4 = ceil( max_sinc_resize_samples_float * 0.25) * 4.0; ///////////////////////// RESAMPLING FUNCTION HELPERS //////////////////////// inline float get_dynamic_loop_size(const float magnification_scale) { // Requires: The following global constants must be defined: // 1.) mask_sinc_lobes // 2.) max_sinc_resize_samples_m4 // Returns: The minimum number of texture samples for a correct downsize // at magnification_scale. // We're downsizing, so the filter is sized across 2*lobes output pixels // (not 2*lobes input texels). This impacts distance measurements and the // minimum number of input samples needed. const float min_samples_float = 2.0 * mask_sinc_lobes / magnification_scale; const float min_samples_m4 = ceil(min_samples_float * 0.25) * 4.0; #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES const float max_samples_m4 = max_sinc_resize_samples_m4; #else // ifdef BREAK_LOOPS_INTO_PIECES // Simulating loops with branches imposes a 128-sample limit. const float max_samples_m4 = min(128.0, max_sinc_resize_samples_m4); #endif return min(min_samples_m4, max_samples_m4); } float2 get_first_texel_tile_uv_and_dist(const float2 tex_uv, const float2 tex_size, const float dr, const float input_tiles_per_texture_r, const float samples, static const bool vertical) { // Requires: 1.) dr == du == 1.0/texture_size.x or // dr == dv == 1.0/texture_size.y // (whichever direction we're resampling in). // It's a scalar to save register space. // 2.) input_tiles_per_texture_r is the number of input tiles // that can fit in the input texture in the direction we're // resampling this pass. // 3.) vertical indicates whether we're resampling vertically // this pass (or horizontally). // Returns: Pack and return the first sample's tile_uv coord in [0, 1] // and its texel distance from the destination pixel, in the // resized dimension only. // We'll start with the topmost or leftmost sample and work down or right, // so get the first sample location and distance. Modify both dimensions // as if we're doing a one-pass 2D resize; we'll throw away the unneeded // (and incorrect) dimension at the end. const float2 curr_texel = tex_uv * tex_size; const float2 prev_texel = floor(curr_texel - float2(under_half)) + float2(0.5); const float2 first_texel = prev_texel - float2(samples/2.0 - 1.0); const float2 first_texel_uv_wrap_2D = first_texel * dr; const float2 first_texel_dist_2D = curr_texel - first_texel; // Convert from tex_uv to tile_uv coords so we can sub fracs for fmods. const float2 first_texel_tile_uv_wrap_2D = first_texel_uv_wrap_2D * input_tiles_per_texture_r; // Project wrapped coordinates to the [0, 1] range. We'll do this with all // samples,but the first texel is special, since it might be negative. const float2 coord_negative = float2((first_texel_tile_uv_wrap_2D.x < 0.),(first_texel_tile_uv_wrap_2D.y < 0.)); const float2 first_texel_tile_uv_2D = frac(first_texel_tile_uv_wrap_2D) + coord_negative; // Pack the first texel's tile_uv coord and texel distance in 1D: const float2 tile_u_and_dist = float2(first_texel_tile_uv_2D.x, first_texel_dist_2D.x); const float2 tile_v_and_dist = float2(first_texel_tile_uv_2D.y, first_texel_dist_2D.y); return vertical ? tile_v_and_dist : tile_u_and_dist; //return lerp(tile_u_and_dist, tile_v_and_dist, float(vertical)); } inline float4 tex2Dlod0try(const sampler2D tex, const float2 tex_uv) { // Mipmapping and anisotropic filtering get confused by sinc-resampling. // One [slow] workaround is to select the lowest mip level: #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD return textureLod(tex, float4(tex_uv, 0.0, 0.0).xy); #else #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS return tex2Dbias(tex, float4(tex_uv, 0.0, -16.0)); #else return texture(tex, tex_uv); #endif #endif } ////////////////////////////// LOOP BODY MACROS ////////////////////////////// // Using inline functions can exceed the temporary register limit, so we're // stuck with #define macros (I'm TRULY sorry). They're declared here instead // of above to be closer to the actual invocation sites. Steps: // 1.) Get the exact texel location. // 2.) Sample the phosphor mask (already assumed encoded in linear RGB). // 3.) Get the distance from the current pixel and sinc weight: // sinc(dist) = sin(pi * dist)/(pi * dist) // We can also use the slower/smoother Lanczos instead: // L(x) = sinc(dist) * sinc(dist / lobes) // 4.) Accumulate the weight sum in weights, and accumulate the weighted texels // in pixel_color (we'll normalize outside the loop at the end). // We vectorize the loop to help reduce the Lanczos window's cost. // The r coord is the coord in the dimension we're resizing along (u or v), // and first_texel_tile_uv_rrrr is a float4 of the first texel's u or v // tile_uv coord in [0, 1]. tex_uv_r will contain the tile_uv u or v coord // for four new texel samples. #define CALCULATE_R_COORD_FOR_4_SAMPLES \ const float4 true_i = float4(i_base + i) + float4(0.0, 1.0, 2.0, 3.0); \ const float4 tile_uv_r = frac( \ first_texel_tile_uv_rrrr + true_i * tile_dr); \ const float4 tex_uv_r = tile_uv_r * tile_size_uv_r; #ifdef PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW #define CALCULATE_SINC_RESAMPLE_WEIGHTS \ const float4 pi_dist_over_lobes = pi_over_lobes * dist; \ const float4 weights = min(sin(pi_dist) * sin(pi_dist_over_lobes) /\ (pi_dist*pi_dist_over_lobes), float4(1.0)); #else #define CALCULATE_SINC_RESAMPLE_WEIGHTS \ const float4 weights = min(sin(pi_dist)/pi_dist, float4(1.0)); #endif #define UPDATE_COLOR_AND_WEIGHT_SUMS \ const float4 dist = magnification_scale * \ abs(first_dist_unscaled - true_i); \ const float4 pi_dist = pi * dist; \ CALCULATE_SINC_RESAMPLE_WEIGHTS; \ pixel_color += new_sample0 * weights.xxx; \ pixel_color += new_sample1 * weights.yyy; \ pixel_color += new_sample2 * weights.zzz; \ pixel_color += new_sample3 * weights.www; \ weight_sum += weights; #define VERTICAL_SINC_RESAMPLE_LOOP_BODY \ CALCULATE_R_COORD_FOR_4_SAMPLES; \ const float3 new_sample0 = tex2Dlod0try(tex, \ float2(tex_uv.x, tex_uv_r.x)).rgb; \ const float3 new_sample1 = tex2Dlod0try(tex, \ float2(tex_uv.x, tex_uv_r.y)).rgb; \ const float3 new_sample2 = tex2Dlod0try(tex, \ float2(tex_uv.x, tex_uv_r.z)).rgb; \ const float3 new_sample3 = tex2Dlod0try(tex, \ float2(tex_uv.x, tex_uv_r.w)).rgb; \ UPDATE_COLOR_AND_WEIGHT_SUMS; #define HORIZONTAL_SINC_RESAMPLE_LOOP_BODY \ CALCULATE_R_COORD_FOR_4_SAMPLES; \ const float3 new_sample0 = tex2Dlod0try(tex, \ float2(tex_uv_r.x, tex_uv.y)).rgb; \ const float3 new_sample1 = tex2Dlod0try(tex, \ float2(tex_uv_r.y, tex_uv.y)).rgb; \ const float3 new_sample2 = tex2Dlod0try(tex, \ float2(tex_uv_r.z, tex_uv.y)).rgb; \ const float3 new_sample3 = tex2Dlod0try(tex, \ float2(tex_uv_r.w, tex_uv.y)).rgb; \ UPDATE_COLOR_AND_WEIGHT_SUMS; //////////////////////////// RESAMPLING FUNCTIONS //////////////////////////// float3 downsample_vertical_sinc_tiled(const sampler2D tex, const float2 tex_uv, const float2 tex_size, static const float dr, const float magnification_scale, static const float tile_size_uv_r) { // Requires: 1.) dr == du == 1.0/texture_size.x or // dr == dv == 1.0/texture_size.y // (whichever direction we're resampling in). // It's a scalar to save register space. // 2.) tile_size_uv_r is the number of texels an input tile // takes up in the input texture, in the direction we're // resampling this pass. // 3.) magnification_scale must be <= 1.0. // Returns: Return a [Lanczos] sinc-resampled pixel of a vertically // downsized input tile embedded in an input texture. (The // vertical version is special-cased though: It assumes the // tile size equals the [static] texture size, since it's used // on an LUT texture input containing one tile. For more // generic use, eliminate the "static" in the parameters.) // The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension // we're resizing along, e.g. "dy" in this case. #ifdef USE_SINGLE_STATIC_LOOP // A static loop can be faster, but it might blur too much from using // more samples than it should. static const int samples = int(max_sinc_resize_samples_m4); #else const int samples = int(get_dynamic_loop_size(magnification_scale)); #endif // Get the first sample location (scalar tile uv coord along the resized // dimension) and distance from the output location (in texels): static const float input_tiles_per_texture_r = 1.0/tile_size_uv_r; // true = vertical resize: const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist( tex_uv, tex_size, dr, input_tiles_per_texture_r, samples, true); const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx; const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy; // Get the tile sample offset: static const float tile_dr = dr * input_tiles_per_texture_r; // Sum up each weight and weighted sample color, varying the looping // strategy based on our expected dynamic loop capabilities. See the // loop body macros above. int i_base = 0; float4 weight_sum = float4(0.0); float3 pixel_color = float3(0.0); static const int i_step = 4; #ifdef BREAK_LOOPS_INTO_PIECES if(samples - i_base >= 64) { for(int i = 0; i < 64; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 64; } if(samples - i_base >= 32) { for(int i = 0; i < 32; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 32; } if(samples - i_base >= 16) { for(int i = 0; i < 16; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 16; } if(samples - i_base >= 8) { for(int i = 0; i < 8; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 8; } if(samples - i_base >= 4) { for(int i = 0; i < 4; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 4; } // Do another 4-sample block for a total of 128 max samples. if(samples - i_base > 0) { for(int i = 0; i < 4; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } } #else for(int i = 0; i < samples; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } #endif // Normalize so the weight_sum == 1.0, and return: const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw; const float3 scalar_weight_sum = float3(weight_sum_reduce.x + weight_sum_reduce.y); return (pixel_color/scalar_weight_sum); } float3 downsample_horizontal_sinc_tiled(const sampler2D tex, const float2 tex_uv, const float2 tex_size, const float dr, const float magnification_scale, const float tile_size_uv_r) { // Differences from downsample_horizontal_sinc_tiled: // 1.) The dr and tile_size_uv_r parameters are not static consts. // 2.) The "vertical" parameter to get_first_texel_tile_uv_and_dist is // set to false instead of true. // 3.) The horizontal version of the loop body is used. // TODO: If we can get guaranteed compile-time dead code elimination, // we can combine the vertical/horizontal downsampling functions by: // 1.) Add an extra static const bool parameter called "vertical." // 2.) Supply it with the result of get_first_texel_tile_uv_and_dist(). // 3.) Use a conditional assignment in the loop body macro. This is the // tricky part: We DO NOT want to incur the extra conditional // assignment in the inner loop at runtime! // The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension // we're resizing along, e.g. "dx" in this case. #ifdef USE_SINGLE_STATIC_LOOP // If we have to load all samples, we might as well use them. static const int samples = int(max_sinc_resize_samples_m4); #else const int samples = int(get_dynamic_loop_size(magnification_scale)); #endif // Get the first sample location (scalar tile uv coord along resized // dimension) and distance from the output location (in texels): const float input_tiles_per_texture_r = 1.0/tile_size_uv_r; // false = horizontal resize: const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist( tex_uv, tex_size, dr, input_tiles_per_texture_r, samples, false); const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx; const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy; // Get the tile sample offset: const float tile_dr = dr * input_tiles_per_texture_r; // Sum up each weight and weighted sample color, varying the looping // strategy based on our expected dynamic loop capabilities. See the // loop body macros above. int i_base = 0; float4 weight_sum = float4(0.0); float3 pixel_color = float3(0.0); static const int i_step = 4; #ifdef BREAK_LOOPS_INTO_PIECES if(samples - i_base >= 64) { for(int i = 0; i < 64; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 64; } if(samples - i_base >= 32) { for(int i = 0; i < 32; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 32; } if(samples - i_base >= 16) { for(int i = 0; i < 16; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 16; } if(samples - i_base >= 8) { for(int i = 0; i < 8; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 8; } if(samples - i_base >= 4) { for(int i = 0; i < 4; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 4; } // Do another 4-sample block for a total of 128 max samples. if(samples - i_base > 0) { for(int i = 0; i < 4; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } } #else for(int i = 0; i < samples; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } #endif // Normalize so the weight_sum == 1.0, and return: const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw; const float3 scalar_weight_sum = float3(weight_sum_reduce.x + weight_sum_reduce.y); return (pixel_color/scalar_weight_sum); } //////////////////////////// TILE SIZE CALCULATION /////////////////////////// float2 get_resized_mask_tile_size(const float2 estimated_viewport_size, const float2 estimated_mask_resize_output_size, const bool solemnly_swear_same_inputs_for_every_pass) { // Requires: The following global constants must be defined according to // certain constraints: // 1.) mask_resize_num_triads: Must be high enough that our // mask sampling method won't have artifacts later // (long story; see derived-settings-and-constants.h) // 2.) mask_resize_src_lut_size: Texel size of our mask LUT // 3.) mask_triads_per_tile: Num horizontal triads in our LUT // 4.) mask_min_allowed_triad_size: User setting (the more // restrictive it is, the faster the resize will go) // 5.) mask_min_allowed_tile_size_x < mask_resize_src_lut_size.x // 6.) mask_triad_size_desired_{runtime, static} // 7.) mask_num_triads_desired_{runtime, static} // 8.) mask_specify_num_triads must be 0.0/1.0 (false/true) // The function parameters must be defined as follows: // 1.) estimated_viewport_size == (final viewport size); // If mask_specify_num_triads is 1.0/true and the viewport // estimate is wrong, the number of triads will differ from // the user's preference by about the same factor. // 2.) estimated_mask_resize_output_size: Must equal the // output size of the MASK_RESIZE pass. // Exception: The x component may be estimated garbage if // and only if the caller throws away the x result. // 3.) solemnly_swear_same_inputs_for_every_pass: Set to false, // unless you can guarantee that every call across every // pass will use the same sizes for the other parameters. // When calling this across multiple passes, always use the // same y viewport size/scale, and always use the same x // viewport size/scale when using the x result. // Returns: Return the final size of a manually resized mask tile, after // constraining the desired size to avoid artifacts. Under // unusual circumstances, tiles may become stretched vertically // (see wall of text below). // Stated tile properties must be correct: static const float tile_aspect_ratio_inv = mask_resize_src_lut_size.y/mask_resize_src_lut_size.x; static const float tile_aspect_ratio = 1.0/tile_aspect_ratio_inv; static const float2 tile_aspect = float2(1.0, tile_aspect_ratio_inv); // If mask_specify_num_triads is 1.0/true and estimated_viewport_size.x is // wrong, the user preference will be misinterpreted: const float desired_tile_size_x = mask_triads_per_tile * lerp( mask_triad_size_desired, estimated_viewport_size.x / mask_num_triads_desired, mask_specify_num_triads); if(get_mask_sample_mode() > 0.5) { // We don't need constraints unless we're sampling MASK_RESIZE. return desired_tile_size_x * tile_aspect; } // Make sure we're not upsizing: const float temp_tile_size_x = min(desired_tile_size_x, mask_resize_src_lut_size.x); // Enforce min_tile_size and max_tile_size in both dimensions: const float2 temp_tile_size = temp_tile_size_x * tile_aspect; static const float2 min_tile_size = mask_min_allowed_tile_size * tile_aspect; const float2 max_tile_size = estimated_mask_resize_output_size / mask_resize_num_tiles; const float2 clamped_tile_size = clamp(temp_tile_size, min_tile_size, max_tile_size); // Try to maintain tile_aspect_ratio. This is the tricky part: // If we're currently resizing in the y dimension, the x components // could be MEANINGLESS. (If estimated_mask_resize_output_size.x is // bogus, then so is max_tile_size.x and clamped_tile_size.x.) // We can't adjust the y size based on clamped_tile_size.x. If it // clamps when it shouldn't, it won't clamp again when later passes // call this function with the correct sizes, and the discrepancy will // break the sampling coords in MASKED_SCANLINES. Instead, we'll limit // the x size based on the y size, but not vice versa, unless the // caller swears the parameters were the same (correct) in every pass. // As a result, triads could appear vertically stretched if: // a.) mask_resize_src_lut_size.x > mask_resize_src_lut_size.y: Wide // LUT's might clamp x more than y (all provided LUT's are square) // b.) true_viewport_size.x < true_viewport_size.y: The user is playing // with a vertically oriented screen (not accounted for anyway) // c.) mask_resize_viewport_scale.x < masked_resize_viewport_scale.y: // Viewport scales are equal by default. // If any of these are the case, you can fix the stretching by setting: // mask_resize_viewport_scale.x = mask_resize_viewport_scale.y * // (1.0 / min_expected_aspect_ratio) * // (mask_resize_src_lut_size.x / mask_resize_src_lut_size.y) const float x_tile_size_from_y = clamped_tile_size.y * tile_aspect_ratio; const float y_tile_size_from_x = lerp(clamped_tile_size.y, clamped_tile_size.x * tile_aspect_ratio_inv, float(solemnly_swear_same_inputs_for_every_pass)); const float2 reclamped_tile_size = float2( min(clamped_tile_size.x, x_tile_size_from_y), min(clamped_tile_size.y, y_tile_size_from_x)); // We need integer tile sizes in both directions for tiled sampling to // work correctly. Use floor (to make sure we don't round up), but be // careful to avoid a rounding bug where floor decreases whole numbers: const float2 final_resized_tile_size = floor(reclamped_tile_size + float2(FIX_ZERO(0.0))); return final_resized_tile_size; } ///////////////////////// FINAL MASK SAMPLING HELPERS //////////////////////// float4 get_mask_sampling_parameters(const float2 mask_resize_texture_size, const float2 mask_resize_video_size, const float2 true_viewport_size, out float2 mask_tiles_per_screen) { // Requires: 1.) Requirements of get_resized_mask_tile_size() must be // met, particularly regarding global constants. // The function parameters must be defined as follows: // 1.) mask_resize_texture_size == MASK_RESIZE.texture_size // if get_mask_sample_mode() is 0 (otherwise anything) // 2.) mask_resize_video_size == MASK_RESIZE.video_size // if get_mask_sample_mode() is 0 (otherwise anything) // 3.) true_viewport_size == output_size for a pass set to // 1.0 viewport scale (i.e. it must be correct) // Returns: Return a float4 containing: // xy: tex_uv coords for the start of the mask tile // zw: tex_uv size of the mask tile from start to end // mask_tiles_per_screen is an out parameter containing the // number of mask tiles that will fit on the screen. // First get the final resized tile size. The viewport size and mask // resize viewport scale must be correct, but don't solemnly swear they // were correct in both mask resize passes unless you know it's true. // (We can better ensure a correct tile aspect ratio if the parameters are // guaranteed correct in all passes...but if we lie, we'll get inconsistent // sizes across passes, resulting in broken texture coordinates.) const float mask_sample_mode = get_mask_sample_mode(); const float2 mask_resize_tile_size = get_resized_mask_tile_size( true_viewport_size, mask_resize_video_size, false); if(mask_sample_mode < 0.5) { // Sample MASK_RESIZE: The resized tile is a fraction of the texture // size and starts at a nonzero offset to allow for border texels: const float2 mask_tile_uv_size = mask_resize_tile_size / mask_resize_texture_size; const float2 skipped_tiles = mask_start_texels/mask_resize_tile_size; const float2 mask_tile_start_uv = skipped_tiles * mask_tile_uv_size; // mask_tiles_per_screen must be based on the *true* viewport size: mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size; return float4(mask_tile_start_uv, mask_tile_uv_size); } else { // If we're tiling at the original size (1:1 pixel:texel), redefine a // "tile" to be the full texture containing many triads. Otherwise, // we're hardware-resampling an LUT, and the texture truly contains a // single unresized phosphor mask tile anyway. static const float2 mask_tile_uv_size = float2(1.0); static const float2 mask_tile_start_uv = float2(0.0); if(mask_sample_mode > 1.5) { // Repeat the full LUT at a 1:1 pixel:texel ratio without resizing: mask_tiles_per_screen = true_viewport_size/mask_texture_large_size; } else { // Hardware-resize the original LUT: mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size; } return float4(mask_tile_start_uv, mask_tile_uv_size); } } /* float2 fix_tiling_discontinuities_normalized(const float2 tile_uv, float2 duv_dx, float2 duv_dy) { // Requires: 1.) duv_dx == ddx(tile_uv) // 2.) duv_dy == ddy(tile_uv) // 3.) tile_uv contains tile-relative uv coords in [0, 1], // such that (0.5, 0.5) is the center of a tile, etc. // ("Tile" can mean texture, the video embedded in the // texture, or some other "tile" embedded in a texture.) // Returns: Return new tile_uv coords that contain no discontinuities // across a 2x2 pixel quad. // Description: // When uv coords wrap from 1.0 to 0.0, they create a discontinuity in the // derivatives, which we assume happened if the absolute difference between // any fragment in a 2x2 block is > ~half a tile. If the current block has // a u or v discontinuity and the current fragment is in the first half of // the tile along that axis (i.e. it wrapped from 1.0 to 0.0), add a tile // to that coord to make the 2x2 block continuous. (It will now have a // coord > 1.0 in the padding area beyond the tile.) This function takes // derivatives as parameters so the caller can reuse them. // In case we're using high-quality (nVidia-style) derivatives, ensure // diagonically opposite fragments see each other for correctness: duv_dx = abs(duv_dx) + abs(ddy(duv_dx)); duv_dy = abs(duv_dy) + abs(ddx(duv_dy)); const float2 pixel_in_first_half_tile = float2((tile_uv.x < 0.5),(tile_uv.y < 0.5)); const float2 jump_exists = float2(((duv_dx + duv_dy).x > 0.5),((duv_dx + duv_dy).y > 0.5)); return tile_uv + jump_exists * pixel_in_first_half_tile; } */ float2 convert_phosphor_tile_uv_wrap_to_tex_uv(const float2 tile_uv_wrap, const float4 mask_tile_start_uv_and_size) { // Requires: 1.) tile_uv_wrap contains tile-relative uv coords, where the // tile spans from [0, 1], such that (0.5, 0.5) is at the // tile center. The input coords can range from [0, inf], // and their fractional parts map to a repeated tile. // ("Tile" can mean texture, the video embedded in the // texture, or some other "tile" embedded in a texture.) // 2.) mask_tile_start_uv_and_size.xy contains tex_uv coords // for the start of the embedded tile in the full texture. // 3.) mask_tile_start_uv_and_size.zw contains the [fractional] // tex_uv size of the embedded tile in the full texture. // Returns: Return tex_uv coords (used for texture sampling) // corresponding to tile_uv_wrap. if(get_mask_sample_mode() < 0.5) { // Manually repeat the resized mask tile to fill the screen: // First get fractional tile_uv coords. Using frac/fmod on coords // confuses anisotropic filtering; fix it as user options dictate. // derived-settings-and-constants.h disables incompatible options. #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE float2 tile_uv = frac(tile_uv_wrap * 0.5) * 2.0; #else float2 tile_uv = frac(tile_uv_wrap); #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES const float2 tile_uv_dx = ddx(tile_uv); const float2 tile_uv_dy = ddy(tile_uv); tile_uv = fix_tiling_discontinuities_normalized(tile_uv, tile_uv_dx, tile_uv_dy); #endif // The tile is embedded in a padded FBO, and it may start at a // nonzero offset if border texels are used to avoid artifacts: const float2 mask_tex_uv = mask_tile_start_uv_and_size.xy + tile_uv * mask_tile_start_uv_and_size.zw; return mask_tex_uv; } else { // Sample from the input phosphor mask texture with hardware tiling. // If we're tiling at the original size (mode 2), the "tile" is the // whole texture, and it contains a large number of triads mapped with // a 1:1 pixel:texel ratio. OTHERWISE, the texture contains a single // unresized tile. tile_uv_wrap already has correct coords for both! return tile_uv_wrap; } } #endif // PHOSPHOR_MASK_RESIZING_H ///////////////////////// END PHOSPHOR-MASK-RESIZING ///////////////////////// #undef COMPAT_PRECISION #undef COMPAT_TEXTURE void main() { gl_Position = position; vTexCoord = texCoord * 1.0001; float2 tex_uv = vTexCoord.xy; // First estimate the viewport size (the user will get the wrong number of // triads if it's wrong and mask_specify_num_triads is 1.0/true). const float2 estimated_viewport_size = output_size / mask_resize_viewport_scale; // Find the final size of our resized phosphor mask tiles. We probably // estimated the viewport size and MASK_RESIZE output size differently last // pass, so do not swear they were the same. ;) const float2 mask_resize_tile_size = get_resized_mask_tile_size( estimated_viewport_size, output_size, false); // We'll render resized tiles until filling the output FBO or meeting a // limit, so compute [wrapped] tile uv coords based on the output uv coords // and the number of tiles that will fit in the FBO. const float2 output_tiles_this_pass = output_size / mask_resize_tile_size; const float2 output_video_uv = tex_uv * texture_size / video_size; const float2 tile_uv_wrap = output_video_uv * output_tiles_this_pass; // Get the texel size of an input tile and related values: const float2 input_tile_size = float2(min( mask_resize_src_lut_size.x, video_size.x), mask_resize_tile_size.y); tile_size_uv = input_tile_size / texture_size; input_tiles_per_texture = texture_size / input_tile_size; // Derive [wrapped] texture uv coords from [wrapped] tile uv coords and // the tile size in uv coords, and save frac() for the fragment shader. src_tex_uv_wrap = tile_uv_wrap * tile_size_uv; // Output the values we need, including the magnification scale and step: //tile_uv_wrap = tile_uv_wrap; //src_tex_uv_wrap = src_tex_uv_wrap; resize_magnification_scale = mask_resize_tile_size / input_tile_size; src_dxdy = float2(1.0/texture_size.x, 0.0); //tile_size_uv = tile_size_uv; //input_tiles_per_texture = input_tiles_per_texture; }