#version 150 ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA uniform sampler2D source[]; uniform vec4 sourceSize[]; uniform vec4 targetSize; in Vertex { vec2 vTexCoord; vec2 scanline_tex_uv; vec2 blur3x3_tex_uv; float bloom_sigma_runtime; }; out vec4 FragColor; // USER SETTINGS BLOCK // #define crt_gamma 2.500000 #define lcd_gamma 2.200000 #define levels_contrast 1.0 #define halation_weight 0.0 #define diffusion_weight 0.075 #define bloom_underestimate_levels 0.8 #define bloom_excess 0.000000 #define beam_min_sigma 0.020000 #define beam_max_sigma 0.300000 #define beam_spot_power 0.330000 #define beam_min_shape 2.000000 #define beam_max_shape 4.000000 #define beam_shape_power 0.250000 #define beam_horiz_filter 0.000000 #define beam_horiz_sigma 0.35 #define beam_horiz_linear_rgb_weight 1.000000 #define convergence_offset_x_r -0.000000 #define convergence_offset_x_g 0.000000 #define convergence_offset_x_b 0.000000 #define convergence_offset_y_r 0.000000 #define convergence_offset_y_g -0.000000 #define convergence_offset_y_b 0.000000 #define mask_type 1.000000 #define mask_sample_mode_desired 0.000000 #define mask_specify_num_triads 0.000000 #define mask_triad_size_desired 3.000000 #define mask_num_triads_desired 480.000000 #define aa_subpixel_r_offset_x_runtime -0.0 #define aa_subpixel_r_offset_y_runtime 0.000000 #define aa_cubic_c 0.500000 #define aa_gauss_sigma 0.500000 #define geom_mode_runtime 0.000000 #define geom_radius 2.000000 #define geom_view_dist 2.000000 #define geom_tilt_angle_x 0.000000 #define geom_tilt_angle_y 0.000000 #define geom_aspect_ratio_x 432.000000 #define geom_aspect_ratio_y 329.000000 #define geom_overscan_x 1.000000 #define geom_overscan_y 1.000000 #define border_size 0.015 #define border_darkness 2.0 #define border_compress 2.500000 #define interlace_bff 0.000000 #define interlace_1080i 0.000000 // END USER SETTINGS BLOCK // // compatibility macros for transparently converting HLSLisms into GLSLisms #define mul(a,b) (b*a) #define lerp(a,b,c) mix(a,b,c) #define saturate(c) clamp(c, 0.0, 1.0) #define frac(x) (fract(x)) #define float2 vec2 #define float3 vec3 #define float4 vec4 #define bool2 bvec2 #define bool3 bvec3 #define bool4 bvec4 #define float2x2 mat2x2 #define float3x3 mat3x3 #define float4x4 mat4x4 #define float4x3 mat4x3 #define float2x4 mat2x4 #define IN params #define texture_size sourceSize[0].xy #define video_size sourceSize[0].xy #define output_size targetSize.xy #define frame_count phase #define static #define inline #define const #define fmod(x,y) mod(x,y) #define ddx(c) dFdx(c) #define ddy(c) dFdy(c) #define atan2(x,y) atan(y,x) #define rsqrt(c) inversesqrt(c) #define MASKED_SCANLINEStexture source[0] #define MASKED_SCANLINEStexture_size sourceSize[0].xy #define MASKED_SCANLINESvideo_size sourceSize[0].xy #define BLOOM_APPROXtexture source[5] #define BLOOM_APPROXtexture_size sourceSize[5].xy #define BLOOM_APPROXvideo_size sourceSize[5].xy #if defined(GL_ES) #define COMPAT_PRECISION mediump #else #define COMPAT_PRECISION #endif #if __VERSION__ >= 130 #define COMPAT_TEXTURE texture #else #define COMPAT_TEXTURE texture2D #endif ///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H //////////////////////////// END USER-SETTINGS ////////////////////////// //#include "derived-settings-and-constants.h" //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H #define DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////// DESCRIPTION //////////////////////////////// // These macros and constants can be used across the whole codebase. // Unlike the values in user-settings.cgh, end users shouldn't modify these. /////////////////////////////// BEGIN INCLUDES /////////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H ///////////////////////////// END USER-SETTINGS //////////////////////////// //#include "user-cgp-constants.h" ///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// #ifndef USER_CGP_CONSTANTS_H #define USER_CGP_CONSTANTS_H // IMPORTANT: // These constants MUST be set appropriately for the settings in crt-royale.cgp // (or whatever related .cgp file you're using). If they aren't, you're likely // to get artifacts, the wrong phosphor mask size, etc. I wish these could be // set directly in the .cgp file to make things easier, but...they can't. // PASS SCALES AND RELATED CONSTANTS: // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of // this shader: One does a viewport-scale bloom, and the other skips it. The // latter benefits from a higher bloom_approx_scale_x, so save both separately: static const float bloom_approx_size_x = 320.0; static const float bloom_approx_size_x_for_fake = 400.0; // Copy the viewport-relative scales of the phosphor mask resize passes // (MASK_RESIZE and the pass immediately preceding it): static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: static const float geom_max_aspect_ratio = 4.0/3.0; // PHOSPHOR MASK TEXTURE CONSTANTS: // Set the following constants to reflect the properties of the phosphor mask // texture named in crt-royale.cgp. The shader optionally resizes a mask tile // based on user settings, then repeats a single tile until filling the screen. // The shader must know the input texture size (default 64x64), and to manually // resize, it must also know the horizontal triads per tile (default 8). static const float2 mask_texture_small_size = float2(64.0, 64.0); static const float2 mask_texture_large_size = float2(512.0, 512.0); static const float mask_triads_per_tile = 8.0; // We need the average brightness of the phosphor mask to compensate for the // dimming it causes. The following four values are roughly correct for the // masks included with the shader. Update the value for any LUT texture you // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). //#define PHOSPHOR_MASK_GRILLE14 static const float mask_grille14_avg_color = 50.6666666/255.0; // TileableLinearApertureGrille14Wide7d33Spacing*.png // TileableLinearApertureGrille14Wide10And6Spacing*.png static const float mask_grille15_avg_color = 53.0/255.0; // TileableLinearApertureGrille15Wide6d33Spacing*.png // TileableLinearApertureGrille15Wide8And5d5Spacing*.png static const float mask_slot_avg_color = 46.0/255.0; // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png static const float mask_shadow_avg_color = 41.0/255.0; // TileableLinearShadowMask*.png // TileableLinearShadowMaskEDP*.png #ifdef PHOSPHOR_MASK_GRILLE14 static const float mask_grille_avg_color = mask_grille14_avg_color; #else static const float mask_grille_avg_color = mask_grille15_avg_color; #endif #endif // USER_CGP_CONSTANTS_H ////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// /////////////////////////////// FIXED SETTINGS /////////////////////////////// // Avoid dividing by zero; using a macro overloads for float, float2, etc.: #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. #ifndef SIMULATE_CRT_ON_LCD #define SIMULATE_CRT_ON_LCD #endif // Manually tiling a manually resized texture creates texture coord derivative // discontinuities and confuses anisotropic filtering, causing discolored tile // seams in the phosphor mask. Workarounds: // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. // b.) "Tile flat twice" requires drawing two full tiles without border padding // to the resized mask FBO, and it's incompatible with same-pass curvature. // (Same-pass curvature isn't used but could be in the future...maybe.) // c.) "Fix discontinuities" requires derivatives and drawing one tile with // border padding to the resized mask FBO, but it works with same-pass // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. // Precedence: a, then, b, then c (if multiple strategies are #defined). #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen // Also, manually resampling the phosphor mask is slightly blurrier with // anisotropic filtering. (Resampling with mipmapping is even worse: It // creates artifacts, but only with the fully bloomed shader.) The difference // is subtle with small triads, but you can fix it for a small cost. //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD ////////////////////////////// DERIVED SETTINGS ////////////////////////////// // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be // #defined by either user-settings.h or a wrapper .cg that #includes the // current .cg pass.) #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE #undef PHOSPHOR_MASK_MANUALLY_RESIZE #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is // inferior in most cases, so replace 2.0 with 0.0: static const float bloom_approx_filter = bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; #else static const float bloom_approx_filter = bloom_approx_filter_static; #endif // Disable slow runtime paths if static parameters are used. Most of these // won't be a problem anyway once the params are disabled, but some will. #ifndef RUNTIME_SHADER_PARAMS_ENABLE #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA #endif #ifdef RUNTIME_ANTIALIAS_WEIGHTS #undef RUNTIME_ANTIALIAS_WEIGHTS #endif #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #endif #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #endif #ifdef RUNTIME_GEOMETRY_TILT #undef RUNTIME_GEOMETRY_TILT #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // Make tex2Dbias a backup for tex2Dlod for wider compatibility. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif // Rule out unavailable anisotropic compatibility strategies: #ifndef DRIVERS_ALLOW_DERIVATIVES #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #ifndef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #endif #ifdef ANTIALIAS_DISABLE_ANISOTROPIC #undef ANTIALIAS_DISABLE_ANISOTROPIC #endif #endif #ifndef DRIVERS_ALLOW_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif // Prioritize anisotropic tiling compatibility strategies by performance and // disable unused strategies. This concentrates all the nesting in one place. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with // flat texture coords in the same pass, but that's all we use. #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #endif #endif // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can // reduce some #ifdef nesting in the next section by essentially OR'ing them: #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif // Prioritize anisotropic resampling compatibility strategies the same way: #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// // If we can use the large mipmapped LUT without mipmapping artifacts, we // should: It gives us more options for using fewer samples. #ifdef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD // TODO: Take advantage of this! #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT static const float2 mask_resize_src_lut_size = mask_texture_large_size; #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to // main_fragment, or a static alias of one of the above. This makes it hard // to select the phosphor mask at runtime: We can't even assign to a uniform // global in the vertex shader or select a sampler2D in the vertex shader and // pass it to the fragment shader (even with explicit TEXUNIT# bindings), // because it just gives us the input texture or a black screen. However, we // can get around these limitations by calling tex2D three times with different // uniform samplers (or resizing the phosphor mask three times altogether). // With dynamic branches, we can process only one of these branches on top of // quickly discarding fragments we don't need (cgc seems able to overcome // limigations around dependent texture fetches inside of branches). Without // dynamic branches, we have to process every branch for every fragment...which // is slower. Runtime sampling mode selection is slower without dynamic // branches as well. Let the user's static #defines decide if it's worth it. #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #else #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // We need to render some minimum number of tiles in the resize passes. // We need at least 1.0 just to repeat a single tile, and we need extra // padding beyond that for anisotropic filtering, discontinuitity fixing, // antialiasing, same-pass curvature (not currently used), etc. First // determine how many border texels and tiles we need, based on how the result // will be sampled: #ifdef GEOMETRY_EARLY static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; // Most antialiasing filters have a base radius of 4.0 pixels: static const float max_aa_base_pixel_border = 4.0 + max_subpixel_offset; #else static const float max_aa_base_pixel_border = 0.0; #endif // Anisotropic filtering adds about 0.5 to the pixel border: #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; #else static const float max_aniso_pixel_border = max_aa_base_pixel_border; #endif // Fixing discontinuities adds 1.0 more to the pixel border: #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; #else static const float max_tiled_pixel_border = max_aniso_pixel_border; #endif // Convert the pixel border to an integer texel border. Assume same-pass // curvature about triples the texel frequency: #ifdef GEOMETRY_EARLY static const float max_mask_texel_border = ceil(max_tiled_pixel_border * 3.0); #else static const float max_mask_texel_border = ceil(max_tiled_pixel_border); #endif // Convert the texel border to a tile border using worst-case assumptions: static const float max_mask_tile_border = max_mask_texel_border/ (mask_min_allowed_triad_size * mask_triads_per_tile); // Finally, set the number of resized tiles to render to MASK_RESIZE, and set // the starting texel (inside borders) for sampling it. #ifndef GEOMETRY_EARLY #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // Special case: Render two tiles without borders. Anisotropic // filtering doesn't seem to be a problem here. static const float mask_resize_num_tiles = 1.0 + 1.0; static const float mask_start_texels = 0.0; #else static const float mask_resize_num_tiles = 1.0 + 2.0 * max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif #else static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of // mask_resize_viewport_scale. This limits the maximum final triad size. // Estimate the minimum number of triads we can split the screen into in each // dimension (we'll be as correct as mask_resize_viewport_scale is): static const float mask_resize_num_triads = mask_resize_num_tiles * mask_triads_per_tile; static const float2 min_allowed_viewport_triads = float2(mask_resize_num_triads) / mask_resize_viewport_scale; //////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// static const float pi = 3.141592653589; // We often want to find the location of the previous texel, e.g.: // const float2 curr_texel = uv * texture_size; // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); // const float2 prev_texel_uv = prev_texel / texture_size; // However, many GPU drivers round incorrectly around exact texel locations. // We need to subtract a little less than 0.5 before flooring, and some GPU's // require this value to be farther from 0.5 than others; define it here. // const float2 prev_texel = // floor(curr_texel - float2(under_half)) + float2(0.5); static const float under_half = 0.4995; #endif // DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS //////////////////////////// //#include "bind-shader-h" ///////////////////////////// BEGIN BIND-SHADER-PARAMS //////////////////////////// #ifndef BIND_SHADER_PARAMS_H #define BIND_SHADER_PARAMS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// /////////////////////////////// BEGIN INCLUDES /////////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H ///////////////////////////// END USER-SETTINGS //////////////////////////// //#include "derived-settings-and-constants.h" ///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H #define DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////// DESCRIPTION //////////////////////////////// // These macros and constants can be used across the whole codebase. // Unlike the values in user-settings.cgh, end users shouldn't modify these. /////////////////////////////// BEGIN INCLUDES /////////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H ///////////////////////////// END USER-SETTINGS //////////////////////////// //#include "user-cgp-constants.h" ///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// #ifndef USER_CGP_CONSTANTS_H #define USER_CGP_CONSTANTS_H // IMPORTANT: // These constants MUST be set appropriately for the settings in crt-royale.cgp // (or whatever related .cgp file you're using). If they aren't, you're likely // to get artifacts, the wrong phosphor mask size, etc. I wish these could be // set directly in the .cgp file to make things easier, but...they can't. // PASS SCALES AND RELATED CONSTANTS: // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of // this shader: One does a viewport-scale bloom, and the other skips it. The // latter benefits from a higher bloom_approx_scale_x, so save both separately: static const float bloom_approx_size_x = 320.0; static const float bloom_approx_size_x_for_fake = 400.0; // Copy the viewport-relative scales of the phosphor mask resize passes // (MASK_RESIZE and the pass immediately preceding it): static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: static const float geom_max_aspect_ratio = 4.0/3.0; // PHOSPHOR MASK TEXTURE CONSTANTS: // Set the following constants to reflect the properties of the phosphor mask // texture named in crt-royale.cgp. The shader optionally resizes a mask tile // based on user settings, then repeats a single tile until filling the screen. // The shader must know the input texture size (default 64x64), and to manually // resize, it must also know the horizontal triads per tile (default 8). static const float2 mask_texture_small_size = float2(64.0, 64.0); static const float2 mask_texture_large_size = float2(512.0, 512.0); static const float mask_triads_per_tile = 8.0; // We need the average brightness of the phosphor mask to compensate for the // dimming it causes. The following four values are roughly correct for the // masks included with the shader. Update the value for any LUT texture you // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). //#define PHOSPHOR_MASK_GRILLE14 static const float mask_grille14_avg_color = 50.6666666/255.0; // TileableLinearApertureGrille14Wide7d33Spacing*.png // TileableLinearApertureGrille14Wide10And6Spacing*.png static const float mask_grille15_avg_color = 53.0/255.0; // TileableLinearApertureGrille15Wide6d33Spacing*.png // TileableLinearApertureGrille15Wide8And5d5Spacing*.png static const float mask_slot_avg_color = 46.0/255.0; // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png static const float mask_shadow_avg_color = 41.0/255.0; // TileableLinearShadowMask*.png // TileableLinearShadowMaskEDP*.png #ifdef PHOSPHOR_MASK_GRILLE14 static const float mask_grille_avg_color = mask_grille14_avg_color; #else static const float mask_grille_avg_color = mask_grille15_avg_color; #endif #endif // USER_CGP_CONSTANTS_H ////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// /////////////////////////////// FIXED SETTINGS /////////////////////////////// // Avoid dividing by zero; using a macro overloads for float, float2, etc.: #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. #ifndef SIMULATE_CRT_ON_LCD #define SIMULATE_CRT_ON_LCD #endif // Manually tiling a manually resized texture creates texture coord derivative // discontinuities and confuses anisotropic filtering, causing discolored tile // seams in the phosphor mask. Workarounds: // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. // b.) "Tile flat twice" requires drawing two full tiles without border padding // to the resized mask FBO, and it's incompatible with same-pass curvature. // (Same-pass curvature isn't used but could be in the future...maybe.) // c.) "Fix discontinuities" requires derivatives and drawing one tile with // border padding to the resized mask FBO, but it works with same-pass // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. // Precedence: a, then, b, then c (if multiple strategies are #defined). #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen // Also, manually resampling the phosphor mask is slightly blurrier with // anisotropic filtering. (Resampling with mipmapping is even worse: It // creates artifacts, but only with the fully bloomed shader.) The difference // is subtle with small triads, but you can fix it for a small cost. //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD ////////////////////////////// DERIVED SETTINGS ////////////////////////////// // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be // #defined by either user-settings.h or a wrapper .cg that #includes the // current .cg pass.) #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE #undef PHOSPHOR_MASK_MANUALLY_RESIZE #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is // inferior in most cases, so replace 2.0 with 0.0: static const float bloom_approx_filter = bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; #else static const float bloom_approx_filter = bloom_approx_filter_static; #endif // Disable slow runtime paths if static parameters are used. Most of these // won't be a problem anyway once the params are disabled, but some will. #ifndef RUNTIME_SHADER_PARAMS_ENABLE #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA #endif #ifdef RUNTIME_ANTIALIAS_WEIGHTS #undef RUNTIME_ANTIALIAS_WEIGHTS #endif #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #endif #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #endif #ifdef RUNTIME_GEOMETRY_TILT #undef RUNTIME_GEOMETRY_TILT #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // Make tex2Dbias a backup for tex2Dlod for wider compatibility. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif // Rule out unavailable anisotropic compatibility strategies: #ifndef DRIVERS_ALLOW_DERIVATIVES #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #ifndef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #endif #ifdef ANTIALIAS_DISABLE_ANISOTROPIC #undef ANTIALIAS_DISABLE_ANISOTROPIC #endif #endif #ifndef DRIVERS_ALLOW_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif // Prioritize anisotropic tiling compatibility strategies by performance and // disable unused strategies. This concentrates all the nesting in one place. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with // flat texture coords in the same pass, but that's all we use. #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #endif #endif // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can // reduce some #ifdef nesting in the next section by essentially OR'ing them: #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif // Prioritize anisotropic resampling compatibility strategies the same way: #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// // If we can use the large mipmapped LUT without mipmapping artifacts, we // should: It gives us more options for using fewer samples. #ifdef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD // TODO: Take advantage of this! #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT static const float2 mask_resize_src_lut_size = mask_texture_large_size; #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to // main_fragment, or a static alias of one of the above. This makes it hard // to select the phosphor mask at runtime: We can't even assign to a uniform // global in the vertex shader or select a sampler2D in the vertex shader and // pass it to the fragment shader (even with explicit TEXUNIT# bindings), // because it just gives us the input texture or a black screen. However, we // can get around these limitations by calling tex2D three times with different // uniform samplers (or resizing the phosphor mask three times altogether). // With dynamic branches, we can process only one of these branches on top of // quickly discarding fragments we don't need (cgc seems able to overcome // limigations around dependent texture fetches inside of branches). Without // dynamic branches, we have to process every branch for every fragment...which // is slower. Runtime sampling mode selection is slower without dynamic // branches as well. Let the user's static #defines decide if it's worth it. #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #else #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // We need to render some minimum number of tiles in the resize passes. // We need at least 1.0 just to repeat a single tile, and we need extra // padding beyond that for anisotropic filtering, discontinuitity fixing, // antialiasing, same-pass curvature (not currently used), etc. First // determine how many border texels and tiles we need, based on how the result // will be sampled: #ifdef GEOMETRY_EARLY static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; // Most antialiasing filters have a base radius of 4.0 pixels: static const float max_aa_base_pixel_border = 4.0 + max_subpixel_offset; #else static const float max_aa_base_pixel_border = 0.0; #endif // Anisotropic filtering adds about 0.5 to the pixel border: #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; #else static const float max_aniso_pixel_border = max_aa_base_pixel_border; #endif // Fixing discontinuities adds 1.0 more to the pixel border: #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; #else static const float max_tiled_pixel_border = max_aniso_pixel_border; #endif // Convert the pixel border to an integer texel border. Assume same-pass // curvature about triples the texel frequency: #ifdef GEOMETRY_EARLY static const float max_mask_texel_border = ceil(max_tiled_pixel_border * 3.0); #else static const float max_mask_texel_border = ceil(max_tiled_pixel_border); #endif // Convert the texel border to a tile border using worst-case assumptions: static const float max_mask_tile_border = max_mask_texel_border/ (mask_min_allowed_triad_size * mask_triads_per_tile); // Finally, set the number of resized tiles to render to MASK_RESIZE, and set // the starting texel (inside borders) for sampling it. #ifndef GEOMETRY_EARLY #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // Special case: Render two tiles without borders. Anisotropic // filtering doesn't seem to be a problem here. static const float mask_resize_num_tiles = 1.0 + 1.0; static const float mask_start_texels = 0.0; #else static const float mask_resize_num_tiles = 1.0 + 2.0 * max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif #else static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of // mask_resize_viewport_scale. This limits the maximum final triad size. // Estimate the minimum number of triads we can split the screen into in each // dimension (we'll be as correct as mask_resize_viewport_scale is): static const float mask_resize_num_triads = mask_resize_num_tiles * mask_triads_per_tile; static const float2 min_allowed_viewport_triads = float2(mask_resize_num_triads) / mask_resize_viewport_scale; //////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// static const float pi = 3.141592653589; // We often want to find the location of the previous texel, e.g.: // const float2 curr_texel = uv * texture_size; // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); // const float2 prev_texel_uv = prev_texel / texture_size; // However, many GPU drivers round incorrectly around exact texel locations. // We need to subtract a little less than 0.5 before flooring, and some GPU's // require this value to be farther from 0.5 than others; define it here. // const float2 prev_texel = // floor(curr_texel - float2(under_half)) + float2(0.5); static const float under_half = 0.4995; #endif // DERIVED_SETTINGS_AND_CONSTANTS_H //////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ///////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// // Override some parameters for gamma-management.h and tex2Dantialias.h: #define OVERRIDE_DEVICE_GAMMA static const float gba_gamma = 3.5; // Irrelevant but necessary to define. #define ANTIALIAS_OVERRIDE_BASICS #define ANTIALIAS_OVERRIDE_PARAMETERS // Provide accessors for vector constants that pack scalar uniforms: inline float2 get_aspect_vector(const float geom_aspect_ratio) { // Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent // the absolute scale from affecting the uv-mapping for curvature: const float geom_clamped_aspect_ratio = min(geom_aspect_ratio, geom_max_aspect_ratio); const float2 geom_aspect = normalize(float2(geom_clamped_aspect_ratio, 1.0)); return geom_aspect; } inline float2 get_geom_overscan_vector() { return float2(geom_overscan_x, geom_overscan_y); } inline float2 get_geom_tilt_angle_vector() { return float2(geom_tilt_angle_x, geom_tilt_angle_y); } inline float3 get_convergence_offsets_x_vector() { return float3(convergence_offset_x_r, convergence_offset_x_g, convergence_offset_x_b); } inline float3 get_convergence_offsets_y_vector() { return float3(convergence_offset_y_r, convergence_offset_y_g, convergence_offset_y_b); } inline float2 get_convergence_offsets_r_vector() { return float2(convergence_offset_x_r, convergence_offset_y_r); } inline float2 get_convergence_offsets_g_vector() { return float2(convergence_offset_x_g, convergence_offset_y_g); } inline float2 get_convergence_offsets_b_vector() { return float2(convergence_offset_x_b, convergence_offset_y_b); } inline float2 get_aa_subpixel_r_offset() { #ifdef RUNTIME_ANTIALIAS_WEIGHTS #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // WARNING: THIS IS EXTREMELY EXPENSIVE. return float2(aa_subpixel_r_offset_x_runtime, aa_subpixel_r_offset_y_runtime); #else return aa_subpixel_r_offset_static; #endif #else return aa_subpixel_r_offset_static; #endif } // Provide accessors settings which still need "cooking:" inline float get_mask_amplify() { static const float mask_grille_amplify = 1.0/mask_grille_avg_color; static const float mask_slot_amplify = 1.0/mask_slot_avg_color; static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color; return mask_type < 0.5 ? mask_grille_amplify : mask_type < 1.5 ? mask_slot_amplify : mask_shadow_amplify; } inline float get_mask_sample_mode() { #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE return mask_sample_mode_desired; #else return clamp(mask_sample_mode_desired, 1.0, 2.0); #endif #else #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE return mask_sample_mode_static; #else return clamp(mask_sample_mode_static, 1.0, 2.0); #endif #endif } #endif // BIND_SHADER_PARAMS_H //////////////////////////// END BIND-SHADER-PARAMS /////////////////////////// /////////////////////////////// VERTEX INCLUDES /////////////////////////////// //#include "../../../../include/gamma-management.h" //////////////////////////// BEGIN GAMMA-MANAGEMENT ////////////////////////// #ifndef GAMMA_MANAGEMENT_H #define GAMMA_MANAGEMENT_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file provides gamma-aware tex*D*() and encode_output() functions. // Requires: Before #include-ing this file, the including file must #define // the following macros when applicable and follow their rules: // 1.) #define FIRST_PASS if this is the first pass. // 2.) #define LAST_PASS if this is the last pass. // 3.) If sRGB is available, set srgb_framebufferN = "true" for // every pass except the last in your .cgp preset. // 4.) If sRGB isn't available but you want gamma-correctness with // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass. // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7) // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7) // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7) // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -) // If an option in [5, 8] is #defined in the first or last pass, it // should be #defined for both. It shouldn't make a difference // whether it's #defined for intermediate passes or not. // Optional: The including file (or an earlier included file) may optionally // #define a number of macros indicating it will override certain // macros and associated constants are as follows: // static constants with either static or uniform constants. The // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define: // static const float ntsc_gamma // static const float pal_gamma // static const float crt_reference_gamma_high // static const float crt_reference_gamma_low // static const float lcd_reference_gamma // static const float crt_office_gamma // static const float lcd_office_gamma // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define: // static const float crt_gamma // static const float gba_gamma // static const float lcd_gamma // 3.) OVERRIDE_FINAL_GAMMA: The user must first define: // static const float input_gamma // static const float intermediate_gamma // static const float output_gamma // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.) // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define: // static const bool assume_opaque_alpha // The gamma constant overrides must be used in every pass or none, // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros. // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis. // Usage: After setting macros appropriately, ignore gamma correction and // replace all tex*D*() calls with equivalent gamma-aware // tex*D*_linearize calls, except: // 1.) When you read an LUT, use regular tex*D or a gamma-specified // function, depending on its gamma encoding: // tex*D*_linearize_gamma (takes a runtime gamma parameter) // 2.) If you must read pass0's original input in a later pass, use // tex2D_linearize_ntsc_gamma. If you want to read pass0's // input with gamma-corrected bilinear filtering, consider // creating a first linearizing pass and reading from the input // of pass1 later. // Then, return encode_output(color) from every fragment shader. // Finally, use the global gamma_aware_bilinear boolean if you want // to statically branch based on whether bilinear filtering is // gamma-correct or not (e.g. for placing Gaussian blur samples). // // Detailed Policy: // tex*D*_linearize() functions enforce a consistent gamma-management policy // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume // their input texture has the same encoding characteristics as the input for // the current pass (which doesn't apply to the exceptions listed above). // Similarly, encode_output() enforces a policy based on the LAST_PASS and // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the // following two pipelines. // Typical pipeline with intermediate sRGB framebuffers: // linear_color = pow(pass0_encoded_color, input_gamma); // intermediate_output = linear_color; // Automatic sRGB encoding // linear_color = intermediate_output; // Automatic sRGB decoding // final_output = pow(intermediate_output, 1.0/output_gamma); // Typical pipeline without intermediate sRGB framebuffers: // linear_color = pow(pass0_encoded_color, input_gamma); // intermediate_output = pow(linear_color, 1.0/intermediate_gamma); // linear_color = pow(intermediate_output, intermediate_gamma); // final_output = pow(intermediate_output, 1.0/output_gamma); // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to // easily get gamma-correctness without banding on devices where sRGB isn't // supported. // // Use This Header to Maximize Code Reuse: // The purpose of this header is to provide a consistent interface for texture // reads and output gamma-encoding that localizes and abstracts away all the // annoying details. This greatly reduces the amount of code in each shader // pass that depends on the pass number in the .cgp preset or whether sRGB // FBO's are being used: You can trivially change the gamma behavior of your // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same // code in your first, Nth, and last passes, you can even put it all in another // header file and #include it from skeleton .cg files that #define the // appropriate pass-specific settings. // // Rationale for Using Three Macros: // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes // a lower maintenance burden on each pass. At first glance it seems we could // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT. // This works for simple use cases where input_gamma == output_gamma, but it // breaks down for more complex scenarios like CRT simulation, where the pass // number determines the gamma encoding of the input and output. /////////////////////////////// BASE CONSTANTS /////////////////////////////// // Set standard gamma constants, but allow users to override them: #ifndef OVERRIDE_STANDARD_GAMMA // Standard encoding gammas: static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? static const float pal_gamma = 2.8; // Never actually 2.8 in practice // Typical device decoding gammas (only use for emulating devices): // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard // gammas: The standards purposely undercorrected for an analog CRT's // assumed 2.5 reference display gamma to maintain contrast in assumed // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf // These unstated assumptions about display gamma and perceptual rendering // intent caused a lot of confusion, and more modern CRT's seemed to target // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit // (they struggle near black with 2.5 gamma anyway), especially PC/laptop // displays designed to view sRGB in bright environments. (Standards are // also in flux again with BT.1886, but it's underspecified for displays.) static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) static const float lcd_reference_gamma = 2.5; // To match CRT static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC static const float lcd_office_gamma = 2.2; // Approximates sRGB #endif // OVERRIDE_STANDARD_GAMMA // Assuming alpha == 1.0 might make it easier for users to avoid some bugs, // but only if they're aware of it. #ifndef OVERRIDE_ALPHA_ASSUMPTIONS static const bool assume_opaque_alpha = false; #endif /////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// // gamma-management.h should be compatible with overriding gamma values with // runtime user parameters, but we can only define other global constants in // terms of static constants, not uniform user parameters. To get around this // limitation, we need to define derived constants using functions. // Set device gamma constants, but allow users to override them: #ifdef OVERRIDE_DEVICE_GAMMA // The user promises to globally define the appropriate constants: inline float get_crt_gamma() { return crt_gamma; } inline float get_gba_gamma() { return gba_gamma; } inline float get_lcd_gamma() { return lcd_gamma; } #else inline float get_crt_gamma() { return crt_reference_gamma_high; } inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) inline float get_lcd_gamma() { return lcd_office_gamma; } #endif // OVERRIDE_DEVICE_GAMMA // Set decoding/encoding gammas for the first/lass passes, but allow overrides: #ifdef OVERRIDE_FINAL_GAMMA // The user promises to globally define the appropriate constants: inline float get_intermediate_gamma() { return intermediate_gamma; } inline float get_input_gamma() { return input_gamma; } inline float get_output_gamma() { return output_gamma; } #else // If we gamma-correct every pass, always use ntsc_gamma between passes to // ensure middle passes don't need to care if anything is being simulated: inline float get_intermediate_gamma() { return ntsc_gamma; } #ifdef SIMULATE_CRT_ON_LCD inline float get_input_gamma() { return get_crt_gamma(); } inline float get_output_gamma() { return get_lcd_gamma(); } #else #ifdef SIMULATE_GBA_ON_LCD inline float get_input_gamma() { return get_gba_gamma(); } inline float get_output_gamma() { return get_lcd_gamma(); } #else #ifdef SIMULATE_LCD_ON_CRT inline float get_input_gamma() { return get_lcd_gamma(); } inline float get_output_gamma() { return get_crt_gamma(); } #else #ifdef SIMULATE_GBA_ON_CRT inline float get_input_gamma() { return get_gba_gamma(); } inline float get_output_gamma() { return get_crt_gamma(); } #else // Don't simulate anything: inline float get_input_gamma() { return ntsc_gamma; } inline float get_output_gamma() { return ntsc_gamma; } #endif // SIMULATE_GBA_ON_CRT #endif // SIMULATE_LCD_ON_CRT #endif // SIMULATE_GBA_ON_LCD #endif // SIMULATE_CRT_ON_LCD #endif // OVERRIDE_FINAL_GAMMA // Set decoding/encoding gammas for the current pass. Use static constants for // linearize_input and gamma_encode_output, because they aren't derived, and // they let the compiler do dead-code elimination. #ifndef GAMMA_ENCODE_EVERY_FBO #ifdef FIRST_PASS static const bool linearize_input = true; inline float get_pass_input_gamma() { return get_input_gamma(); } #else static const bool linearize_input = false; inline float get_pass_input_gamma() { return 1.0; } #endif #ifdef LAST_PASS static const bool gamma_encode_output = true; inline float get_pass_output_gamma() { return get_output_gamma(); } #else static const bool gamma_encode_output = false; inline float get_pass_output_gamma() { return 1.0; } #endif #else static const bool linearize_input = true; static const bool gamma_encode_output = true; #ifdef FIRST_PASS inline float get_pass_input_gamma() { return get_input_gamma(); } #else inline float get_pass_input_gamma() { return get_intermediate_gamma(); } #endif #ifdef LAST_PASS inline float get_pass_output_gamma() { return get_output_gamma(); } #else inline float get_pass_output_gamma() { return get_intermediate_gamma(); } #endif #endif // Users might want to know if bilinear filtering will be gamma-correct: static const bool gamma_aware_bilinear = !linearize_input; ////////////////////// COLOR ENCODING/DECODING FUNCTIONS ///////////////////// inline float4 encode_output(const float4 color) { if(gamma_encode_output) { if(assume_opaque_alpha) { return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0); } else { return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a); } } else { return color; } } inline float4 decode_input(const float4 color) { if(linearize_input) { if(assume_opaque_alpha) { return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0); } else { return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a); } } else { return color; } } inline float4 decode_gamma_input(const float4 color, const float3 gamma) { if(assume_opaque_alpha) { return float4(pow(color.rgb, gamma), 1.0); } else { return float4(pow(color.rgb, gamma), color.a); } } //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯ //#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D))) // EDIT: it's the 'const' in front of the coords that's doing it /////////////////////////// TEXTURE LOOKUP WRAPPERS ////////////////////////// // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: // Provide a wide array of linearizing texture lookup wrapper functions. The // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D // lookups are provided for completeness in case that changes someday. Nobody // is likely to use the *fetch and *proj functions, but they're included just // in case. The only tex*D texture sampling functions omitted are: // - tex*Dcmpbias // - tex*Dcmplod // - tex*DARRAY* // - tex*DMS* // - Variants returning integers // Standard line length restrictions are ignored below for vertical brevity. /* // tex1D: inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords) { return decode_input(tex1D(tex, tex_coords)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords) { return decode_input(tex1D(tex, tex_coords)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off) { return decode_input(tex1D(tex, tex_coords, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) { return decode_input(tex1D(tex, tex_coords, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy) { return decode_input(tex1D(tex, tex_coords, dx, dy)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy) { return decode_input(tex1D(tex, tex_coords, dx, dy)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off) { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off) { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } // tex1Dbias: inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords) { return decode_input(tex1Dbias(tex, tex_coords)); } inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); } // tex1Dfetch: inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords) { return decode_input(tex1Dfetch(tex, tex_coords)); } inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off) { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); } // tex1Dlod: inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords) { return decode_input(tex1Dlod(tex, tex_coords)); } inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); } // tex1Dproj: inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords) { return decode_input(tex1Dproj(tex, tex_coords)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords) { return decode_input(tex1Dproj(tex, tex_coords)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } */ // tex2D: inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords) { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); } inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords) { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); } inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords, texel_off)); } inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } // tex2Dbias: //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords) //{ return decode_input(tex2Dbias(tex, tex_coords)); } //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); } // tex2Dfetch: //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords) //{ return decode_input(tex2Dfetch(tex, tex_coords)); } //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off) //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); } // tex2Dlod: inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords) { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); } inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } /* // tex2Dproj: inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords) { return decode_input(tex2Dproj(tex, tex_coords)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords) { return decode_input(tex2Dproj(tex, tex_coords)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } */ /* // tex3D: inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords) { return decode_input(tex3D(tex, tex_coords)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex3D(tex, tex_coords, texel_off)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy) { return decode_input(tex3D(tex, tex_coords, dx, dy)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off) { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); } // tex3Dbias: inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dbias(tex, tex_coords)); } inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); } // tex3Dfetch: inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords) { return decode_input(tex3Dfetch(tex, tex_coords)); } inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off) { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); } // tex3Dlod: inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dlod(tex, tex_coords)); } inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); } // tex3Dproj: inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dproj(tex, tex_coords)); } inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); } /////////* // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: // This narrow selection of nonstandard tex2D* functions can be useful: // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0. //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords) //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); } //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off) //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); } // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS: // Provide a narrower selection of tex2D* wrapper functions that decode an // input sample with a specified gamma value. These are useful for reading // LUT's and for reading the input of pass0 in a later pass. // tex2D: inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma) { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); } inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma) { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } /* // tex2Dbias: inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma) { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); } inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma) { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); } // tex2Dfetch: inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma) { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); } inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma) { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); } */ // tex2Dlod: inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma) { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); } inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma) { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); } #endif // GAMMA_MANAGEMENT_H //////////////////////////// END GAMMA-MANAGEMENT ////////////////////////// //#include "phosphor-mask-resizing.h" //////////////////////// BEGIN PHOSPHOR-MASK-RESIZING //////////////////////// #ifndef PHOSPHOR_MASK_RESIZING_H #define PHOSPHOR_MASK_RESIZING_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ////////////////////////////////// INCLUDES ////////////////////////////////// //#include "../user-settings.h" //#include "derived-settings-and-constants.h" ///////////////////////////// CODEPATH SELECTION ///////////////////////////// // Choose a looping strategy based on what's allowed: // Dynamic loops not allowed: Use a flat static loop. // Dynamic loops accomodated: Coarsely branch around static loops. // Dynamic loops assumed allowed: Use a flat dynamic loop. #ifndef DRIVERS_ALLOW_DYNAMIC_BRANCHES #ifdef ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS #define BREAK_LOOPS_INTO_PIECES #else #define USE_SINGLE_STATIC_LOOP #endif #endif // No else needed: Dynamic loops assumed. ////////////////////////////////// CONSTANTS ///////////////////////////////// // The larger the resized tile, the fewer samples we'll need for downsizing. // See if we can get a static min tile size > mask_min_allowed_tile_size: static const float mask_min_allowed_tile_size = ceil( mask_min_allowed_triad_size * mask_triads_per_tile); static const float mask_min_expected_tile_size = mask_min_allowed_tile_size; // Limit the number of sinc resize taps by the maximum minification factor: static const float pi_over_lobes = pi/mask_sinc_lobes; static const float max_sinc_resize_samples_float = 2.0 * mask_sinc_lobes * mask_resize_src_lut_size.x/mask_min_expected_tile_size; // Vectorized loops sample in multiples of 4. Round up to be safe: static const float max_sinc_resize_samples_m4 = ceil( max_sinc_resize_samples_float * 0.25) * 4.0; ///////////////////////// RESAMPLING FUNCTION HELPERS //////////////////////// inline float get_dynamic_loop_size(const float magnification_scale) { // Requires: The following global constants must be defined: // 1.) mask_sinc_lobes // 2.) max_sinc_resize_samples_m4 // Returns: The minimum number of texture samples for a correct downsize // at magnification_scale. // We're downsizing, so the filter is sized across 2*lobes output pixels // (not 2*lobes input texels). This impacts distance measurements and the // minimum number of input samples needed. const float min_samples_float = 2.0 * mask_sinc_lobes / magnification_scale; const float min_samples_m4 = ceil(min_samples_float * 0.25) * 4.0; #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES const float max_samples_m4 = max_sinc_resize_samples_m4; #else // ifdef BREAK_LOOPS_INTO_PIECES // Simulating loops with branches imposes a 128-sample limit. const float max_samples_m4 = min(128.0, max_sinc_resize_samples_m4); #endif return min(min_samples_m4, max_samples_m4); } float2 get_first_texel_tile_uv_and_dist(const float2 tex_uv, const float2 tex_size, const float dr, const float input_tiles_per_texture_r, const float samples, static const bool vertical) { // Requires: 1.) dr == du == 1.0/texture_size.x or // dr == dv == 1.0/texture_size.y // (whichever direction we're resampling in). // It's a scalar to save register space. // 2.) input_tiles_per_texture_r is the number of input tiles // that can fit in the input texture in the direction we're // resampling this pass. // 3.) vertical indicates whether we're resampling vertically // this pass (or horizontally). // Returns: Pack and return the first sample's tile_uv coord in [0, 1] // and its texel distance from the destination pixel, in the // resized dimension only. // We'll start with the topmost or leftmost sample and work down or right, // so get the first sample location and distance. Modify both dimensions // as if we're doing a one-pass 2D resize; we'll throw away the unneeded // (and incorrect) dimension at the end. const float2 curr_texel = tex_uv * tex_size; const float2 prev_texel = floor(curr_texel - float2(under_half)) + float2(0.5); const float2 first_texel = prev_texel - float2(samples/2.0 - 1.0); const float2 first_texel_uv_wrap_2D = first_texel * dr; const float2 first_texel_dist_2D = curr_texel - first_texel; // Convert from tex_uv to tile_uv coords so we can sub fracs for fmods. const float2 first_texel_tile_uv_wrap_2D = first_texel_uv_wrap_2D * input_tiles_per_texture_r; // Project wrapped coordinates to the [0, 1] range. We'll do this with all // samples,but the first texel is special, since it might be negative. const float2 coord_negative = float2((first_texel_tile_uv_wrap_2D.x < 0.),(first_texel_tile_uv_wrap_2D.y < 0.)); const float2 first_texel_tile_uv_2D = frac(first_texel_tile_uv_wrap_2D) + coord_negative; // Pack the first texel's tile_uv coord and texel distance in 1D: const float2 tile_u_and_dist = float2(first_texel_tile_uv_2D.x, first_texel_dist_2D.x); const float2 tile_v_and_dist = float2(first_texel_tile_uv_2D.y, first_texel_dist_2D.y); return vertical ? tile_v_and_dist : tile_u_and_dist; //return lerp(tile_u_and_dist, tile_v_and_dist, float(vertical)); } inline float4 tex2Dlod0try(const sampler2D tex, const float2 tex_uv) { // Mipmapping and anisotropic filtering get confused by sinc-resampling. // One [slow] workaround is to select the lowest mip level: #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD return textureLod(tex, float4(tex_uv, 0.0, 0.0).xy); #else #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS return tex2Dbias(tex, float4(tex_uv, 0.0, -16.0)); #else return texture(tex, tex_uv); #endif #endif } ////////////////////////////// LOOP BODY MACROS ////////////////////////////// // Using inline functions can exceed the temporary register limit, so we're // stuck with #define macros (I'm TRULY sorry). They're declared here instead // of above to be closer to the actual invocation sites. Steps: // 1.) Get the exact texel location. // 2.) Sample the phosphor mask (already assumed encoded in linear RGB). // 3.) Get the distance from the current pixel and sinc weight: // sinc(dist) = sin(pi * dist)/(pi * dist) // We can also use the slower/smoother Lanczos instead: // L(x) = sinc(dist) * sinc(dist / lobes) // 4.) Accumulate the weight sum in weights, and accumulate the weighted texels // in pixel_color (we'll normalize outside the loop at the end). // We vectorize the loop to help reduce the Lanczos window's cost. // The r coord is the coord in the dimension we're resizing along (u or v), // and first_texel_tile_uv_rrrr is a float4 of the first texel's u or v // tile_uv coord in [0, 1]. tex_uv_r will contain the tile_uv u or v coord // for four new texel samples. #define CALCULATE_R_COORD_FOR_4_SAMPLES \ const float4 true_i = float4(i_base + i) + float4(0.0, 1.0, 2.0, 3.0); \ const float4 tile_uv_r = frac( \ first_texel_tile_uv_rrrr + true_i * tile_dr); \ const float4 tex_uv_r = tile_uv_r * tile_size_uv_r; #ifdef PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW #define CALCULATE_SINC_RESAMPLE_WEIGHTS \ const float4 pi_dist_over_lobes = pi_over_lobes * dist; \ const float4 weights = min(sin(pi_dist) * sin(pi_dist_over_lobes) /\ (pi_dist*pi_dist_over_lobes), float4(1.0)); #else #define CALCULATE_SINC_RESAMPLE_WEIGHTS \ const float4 weights = min(sin(pi_dist)/pi_dist, float4(1.0)); #endif #define UPDATE_COLOR_AND_WEIGHT_SUMS \ const float4 dist = magnification_scale * \ abs(first_dist_unscaled - true_i); \ const float4 pi_dist = pi * dist; \ CALCULATE_SINC_RESAMPLE_WEIGHTS; \ pixel_color += new_sample0 * weights.xxx; \ pixel_color += new_sample1 * weights.yyy; \ pixel_color += new_sample2 * weights.zzz; \ pixel_color += new_sample3 * weights.www; \ weight_sum += weights; #define VERTICAL_SINC_RESAMPLE_LOOP_BODY \ CALCULATE_R_COORD_FOR_4_SAMPLES; \ const float3 new_sample0 = tex2Dlod0try(tex, \ float2(tex_uv.x, tex_uv_r.x)).rgb; \ const float3 new_sample1 = tex2Dlod0try(tex, \ float2(tex_uv.x, tex_uv_r.y)).rgb; \ const float3 new_sample2 = tex2Dlod0try(tex, \ float2(tex_uv.x, tex_uv_r.z)).rgb; \ const float3 new_sample3 = tex2Dlod0try(tex, \ float2(tex_uv.x, tex_uv_r.w)).rgb; \ UPDATE_COLOR_AND_WEIGHT_SUMS; #define HORIZONTAL_SINC_RESAMPLE_LOOP_BODY \ CALCULATE_R_COORD_FOR_4_SAMPLES; \ const float3 new_sample0 = tex2Dlod0try(tex, \ float2(tex_uv_r.x, tex_uv.y)).rgb; \ const float3 new_sample1 = tex2Dlod0try(tex, \ float2(tex_uv_r.y, tex_uv.y)).rgb; \ const float3 new_sample2 = tex2Dlod0try(tex, \ float2(tex_uv_r.z, tex_uv.y)).rgb; \ const float3 new_sample3 = tex2Dlod0try(tex, \ float2(tex_uv_r.w, tex_uv.y)).rgb; \ UPDATE_COLOR_AND_WEIGHT_SUMS; //////////////////////////// RESAMPLING FUNCTIONS //////////////////////////// float3 downsample_vertical_sinc_tiled(const sampler2D tex, const float2 tex_uv, const float2 tex_size, static const float dr, const float magnification_scale, static const float tile_size_uv_r) { // Requires: 1.) dr == du == 1.0/texture_size.x or // dr == dv == 1.0/texture_size.y // (whichever direction we're resampling in). // It's a scalar to save register space. // 2.) tile_size_uv_r is the number of texels an input tile // takes up in the input texture, in the direction we're // resampling this pass. // 3.) magnification_scale must be <= 1.0. // Returns: Return a [Lanczos] sinc-resampled pixel of a vertically // downsized input tile embedded in an input texture. (The // vertical version is special-cased though: It assumes the // tile size equals the [static] texture size, since it's used // on an LUT texture input containing one tile. For more // generic use, eliminate the "static" in the parameters.) // The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension // we're resizing along, e.g. "dy" in this case. #ifdef USE_SINGLE_STATIC_LOOP // A static loop can be faster, but it might blur too much from using // more samples than it should. static const int samples = int(max_sinc_resize_samples_m4); #else const int samples = int(get_dynamic_loop_size(magnification_scale)); #endif // Get the first sample location (scalar tile uv coord along the resized // dimension) and distance from the output location (in texels): static const float input_tiles_per_texture_r = 1.0/tile_size_uv_r; // true = vertical resize: const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist( tex_uv, tex_size, dr, input_tiles_per_texture_r, samples, true); const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx; const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy; // Get the tile sample offset: static const float tile_dr = dr * input_tiles_per_texture_r; // Sum up each weight and weighted sample color, varying the looping // strategy based on our expected dynamic loop capabilities. See the // loop body macros above. int i_base = 0; float4 weight_sum = float4(0.0); float3 pixel_color = float3(0.0); static const int i_step = 4; #ifdef BREAK_LOOPS_INTO_PIECES if(samples - i_base >= 64) { for(int i = 0; i < 64; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 64; } if(samples - i_base >= 32) { for(int i = 0; i < 32; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 32; } if(samples - i_base >= 16) { for(int i = 0; i < 16; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 16; } if(samples - i_base >= 8) { for(int i = 0; i < 8; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 8; } if(samples - i_base >= 4) { for(int i = 0; i < 4; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 4; } // Do another 4-sample block for a total of 128 max samples. if(samples - i_base > 0) { for(int i = 0; i < 4; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } } #else for(int i = 0; i < samples; i += i_step) { VERTICAL_SINC_RESAMPLE_LOOP_BODY; } #endif // Normalize so the weight_sum == 1.0, and return: const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw; const float3 scalar_weight_sum = float3(weight_sum_reduce.x + weight_sum_reduce.y); return (pixel_color/scalar_weight_sum); } float3 downsample_horizontal_sinc_tiled(const sampler2D tex, const float2 tex_uv, const float2 tex_size, const float dr, const float magnification_scale, const float tile_size_uv_r) { // Differences from downsample_horizontal_sinc_tiled: // 1.) The dr and tile_size_uv_r parameters are not static consts. // 2.) The "vertical" parameter to get_first_texel_tile_uv_and_dist is // set to false instead of true. // 3.) The horizontal version of the loop body is used. // TODO: If we can get guaranteed compile-time dead code elimination, // we can combine the vertical/horizontal downsampling functions by: // 1.) Add an extra static const bool parameter called "vertical." // 2.) Supply it with the result of get_first_texel_tile_uv_and_dist(). // 3.) Use a conditional assignment in the loop body macro. This is the // tricky part: We DO NOT want to incur the extra conditional // assignment in the inner loop at runtime! // The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension // we're resizing along, e.g. "dx" in this case. #ifdef USE_SINGLE_STATIC_LOOP // If we have to load all samples, we might as well use them. static const int samples = int(max_sinc_resize_samples_m4); #else const int samples = int(get_dynamic_loop_size(magnification_scale)); #endif // Get the first sample location (scalar tile uv coord along resized // dimension) and distance from the output location (in texels): const float input_tiles_per_texture_r = 1.0/tile_size_uv_r; // false = horizontal resize: const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist( tex_uv, tex_size, dr, input_tiles_per_texture_r, samples, false); const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx; const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy; // Get the tile sample offset: const float tile_dr = dr * input_tiles_per_texture_r; // Sum up each weight and weighted sample color, varying the looping // strategy based on our expected dynamic loop capabilities. See the // loop body macros above. int i_base = 0; float4 weight_sum = float4(0.0); float3 pixel_color = float3(0.0); static const int i_step = 4; #ifdef BREAK_LOOPS_INTO_PIECES if(samples - i_base >= 64) { for(int i = 0; i < 64; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 64; } if(samples - i_base >= 32) { for(int i = 0; i < 32; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 32; } if(samples - i_base >= 16) { for(int i = 0; i < 16; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 16; } if(samples - i_base >= 8) { for(int i = 0; i < 8; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 8; } if(samples - i_base >= 4) { for(int i = 0; i < 4; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } i_base += 4; } // Do another 4-sample block for a total of 128 max samples. if(samples - i_base > 0) { for(int i = 0; i < 4; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } } #else for(int i = 0; i < samples; i += i_step) { HORIZONTAL_SINC_RESAMPLE_LOOP_BODY; } #endif // Normalize so the weight_sum == 1.0, and return: const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw; const float3 scalar_weight_sum = float3(weight_sum_reduce.x + weight_sum_reduce.y); return (pixel_color/scalar_weight_sum); } //////////////////////////// TILE SIZE CALCULATION /////////////////////////// float2 get_resized_mask_tile_size(const float2 estimated_viewport_size, const float2 estimated_mask_resize_output_size, const bool solemnly_swear_same_inputs_for_every_pass) { // Requires: The following global constants must be defined according to // certain constraints: // 1.) mask_resize_num_triads: Must be high enough that our // mask sampling method won't have artifacts later // (long story; see derived-settings-and-constants.h) // 2.) mask_resize_src_lut_size: Texel size of our mask LUT // 3.) mask_triads_per_tile: Num horizontal triads in our LUT // 4.) mask_min_allowed_triad_size: User setting (the more // restrictive it is, the faster the resize will go) // 5.) mask_min_allowed_tile_size_x < mask_resize_src_lut_size.x // 6.) mask_triad_size_desired_{runtime, static} // 7.) mask_num_triads_desired_{runtime, static} // 8.) mask_specify_num_triads must be 0.0/1.0 (false/true) // The function parameters must be defined as follows: // 1.) estimated_viewport_size == (final viewport size); // If mask_specify_num_triads is 1.0/true and the viewport // estimate is wrong, the number of triads will differ from // the user's preference by about the same factor. // 2.) estimated_mask_resize_output_size: Must equal the // output size of the MASK_RESIZE pass. // Exception: The x component may be estimated garbage if // and only if the caller throws away the x result. // 3.) solemnly_swear_same_inputs_for_every_pass: Set to false, // unless you can guarantee that every call across every // pass will use the same sizes for the other parameters. // When calling this across multiple passes, always use the // same y viewport size/scale, and always use the same x // viewport size/scale when using the x result. // Returns: Return the final size of a manually resized mask tile, after // constraining the desired size to avoid artifacts. Under // unusual circumstances, tiles may become stretched vertically // (see wall of text below). // Stated tile properties must be correct: static const float tile_aspect_ratio_inv = mask_resize_src_lut_size.y/mask_resize_src_lut_size.x; static const float tile_aspect_ratio = 1.0/tile_aspect_ratio_inv; static const float2 tile_aspect = float2(1.0, tile_aspect_ratio_inv); // If mask_specify_num_triads is 1.0/true and estimated_viewport_size.x is // wrong, the user preference will be misinterpreted: const float desired_tile_size_x = mask_triads_per_tile * lerp( mask_triad_size_desired, estimated_viewport_size.x / mask_num_triads_desired, mask_specify_num_triads); if(get_mask_sample_mode() > 0.5) { // We don't need constraints unless we're sampling MASK_RESIZE. return desired_tile_size_x * tile_aspect; } // Make sure we're not upsizing: const float temp_tile_size_x = min(desired_tile_size_x, mask_resize_src_lut_size.x); // Enforce min_tile_size and max_tile_size in both dimensions: const float2 temp_tile_size = temp_tile_size_x * tile_aspect; static const float2 min_tile_size = mask_min_allowed_tile_size * tile_aspect; const float2 max_tile_size = estimated_mask_resize_output_size / mask_resize_num_tiles; const float2 clamped_tile_size = clamp(temp_tile_size, min_tile_size, max_tile_size); // Try to maintain tile_aspect_ratio. This is the tricky part: // If we're currently resizing in the y dimension, the x components // could be MEANINGLESS. (If estimated_mask_resize_output_size.x is // bogus, then so is max_tile_size.x and clamped_tile_size.x.) // We can't adjust the y size based on clamped_tile_size.x. If it // clamps when it shouldn't, it won't clamp again when later passes // call this function with the correct sizes, and the discrepancy will // break the sampling coords in MASKED_SCANLINES. Instead, we'll limit // the x size based on the y size, but not vice versa, unless the // caller swears the parameters were the same (correct) in every pass. // As a result, triads could appear vertically stretched if: // a.) mask_resize_src_lut_size.x > mask_resize_src_lut_size.y: Wide // LUT's might clamp x more than y (all provided LUT's are square) // b.) true_viewport_size.x < true_viewport_size.y: The user is playing // with a vertically oriented screen (not accounted for anyway) // c.) mask_resize_viewport_scale.x < masked_resize_viewport_scale.y: // Viewport scales are equal by default. // If any of these are the case, you can fix the stretching by setting: // mask_resize_viewport_scale.x = mask_resize_viewport_scale.y * // (1.0 / min_expected_aspect_ratio) * // (mask_resize_src_lut_size.x / mask_resize_src_lut_size.y) const float x_tile_size_from_y = clamped_tile_size.y * tile_aspect_ratio; const float y_tile_size_from_x = lerp(clamped_tile_size.y, clamped_tile_size.x * tile_aspect_ratio_inv, float(solemnly_swear_same_inputs_for_every_pass)); const float2 reclamped_tile_size = float2( min(clamped_tile_size.x, x_tile_size_from_y), min(clamped_tile_size.y, y_tile_size_from_x)); // We need integer tile sizes in both directions for tiled sampling to // work correctly. Use floor (to make sure we don't round up), but be // careful to avoid a rounding bug where floor decreases whole numbers: const float2 final_resized_tile_size = floor(reclamped_tile_size + float2(FIX_ZERO(0.0))); return final_resized_tile_size; } ///////////////////////// FINAL MASK SAMPLING HELPERS //////////////////////// float4 get_mask_sampling_parameters(const float2 mask_resize_texture_size, const float2 mask_resize_video_size, const float2 true_viewport_size, out float2 mask_tiles_per_screen) { // Requires: 1.) Requirements of get_resized_mask_tile_size() must be // met, particularly regarding global constants. // The function parameters must be defined as follows: // 1.) mask_resize_texture_size == MASK_RESIZE.texture_size // if get_mask_sample_mode() is 0 (otherwise anything) // 2.) mask_resize_video_size == MASK_RESIZE.video_size // if get_mask_sample_mode() is 0 (otherwise anything) // 3.) true_viewport_size == output_size for a pass set to // 1.0 viewport scale (i.e. it must be correct) // Returns: Return a float4 containing: // xy: tex_uv coords for the start of the mask tile // zw: tex_uv size of the mask tile from start to end // mask_tiles_per_screen is an out parameter containing the // number of mask tiles that will fit on the screen. // First get the final resized tile size. The viewport size and mask // resize viewport scale must be correct, but don't solemnly swear they // were correct in both mask resize passes unless you know it's true. // (We can better ensure a correct tile aspect ratio if the parameters are // guaranteed correct in all passes...but if we lie, we'll get inconsistent // sizes across passes, resulting in broken texture coordinates.) const float mask_sample_mode = get_mask_sample_mode(); const float2 mask_resize_tile_size = get_resized_mask_tile_size( true_viewport_size, mask_resize_video_size, false); if(mask_sample_mode < 0.5) { // Sample MASK_RESIZE: The resized tile is a fraction of the texture // size and starts at a nonzero offset to allow for border texels: const float2 mask_tile_uv_size = mask_resize_tile_size / mask_resize_texture_size; const float2 skipped_tiles = mask_start_texels/mask_resize_tile_size; const float2 mask_tile_start_uv = skipped_tiles * mask_tile_uv_size; // mask_tiles_per_screen must be based on the *true* viewport size: mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size; return float4(mask_tile_start_uv, mask_tile_uv_size); } else { // If we're tiling at the original size (1:1 pixel:texel), redefine a // "tile" to be the full texture containing many triads. Otherwise, // we're hardware-resampling an LUT, and the texture truly contains a // single unresized phosphor mask tile anyway. static const float2 mask_tile_uv_size = float2(1.0); static const float2 mask_tile_start_uv = float2(0.0); if(mask_sample_mode > 1.5) { // Repeat the full LUT at a 1:1 pixel:texel ratio without resizing: mask_tiles_per_screen = true_viewport_size/mask_texture_large_size; } else { // Hardware-resize the original LUT: mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size; } return float4(mask_tile_start_uv, mask_tile_uv_size); } } /* float2 fix_tiling_discontinuities_normalized(const float2 tile_uv, float2 duv_dx, float2 duv_dy) { // Requires: 1.) duv_dx == ddx(tile_uv) // 2.) duv_dy == ddy(tile_uv) // 3.) tile_uv contains tile-relative uv coords in [0, 1], // such that (0.5, 0.5) is the center of a tile, etc. // ("Tile" can mean texture, the video embedded in the // texture, or some other "tile" embedded in a texture.) // Returns: Return new tile_uv coords that contain no discontinuities // across a 2x2 pixel quad. // Description: // When uv coords wrap from 1.0 to 0.0, they create a discontinuity in the // derivatives, which we assume happened if the absolute difference between // any fragment in a 2x2 block is > ~half a tile. If the current block has // a u or v discontinuity and the current fragment is in the first half of // the tile along that axis (i.e. it wrapped from 1.0 to 0.0), add a tile // to that coord to make the 2x2 block continuous. (It will now have a // coord > 1.0 in the padding area beyond the tile.) This function takes // derivatives as parameters so the caller can reuse them. // In case we're using high-quality (nVidia-style) derivatives, ensure // diagonically opposite fragments see each other for correctness: duv_dx = abs(duv_dx) + abs(ddy(duv_dx)); duv_dy = abs(duv_dy) + abs(ddx(duv_dy)); const float2 pixel_in_first_half_tile = float2((tile_uv.x < 0.5),(tile_uv.y < 0.5)); const float2 jump_exists = float2(((duv_dx + duv_dy).x > 0.5),((duv_dx + duv_dy).y > 0.5)); return tile_uv + jump_exists * pixel_in_first_half_tile; } */ float2 convert_phosphor_tile_uv_wrap_to_tex_uv(const float2 tile_uv_wrap, const float4 mask_tile_start_uv_and_size) { // Requires: 1.) tile_uv_wrap contains tile-relative uv coords, where the // tile spans from [0, 1], such that (0.5, 0.5) is at the // tile center. The input coords can range from [0, inf], // and their fractional parts map to a repeated tile. // ("Tile" can mean texture, the video embedded in the // texture, or some other "tile" embedded in a texture.) // 2.) mask_tile_start_uv_and_size.xy contains tex_uv coords // for the start of the embedded tile in the full texture. // 3.) mask_tile_start_uv_and_size.zw contains the [fractional] // tex_uv size of the embedded tile in the full texture. // Returns: Return tex_uv coords (used for texture sampling) // corresponding to tile_uv_wrap. if(get_mask_sample_mode() < 0.5) { // Manually repeat the resized mask tile to fill the screen: // First get fractional tile_uv coords. Using frac/fmod on coords // confuses anisotropic filtering; fix it as user options dictate. // derived-settings-and-constants.h disables incompatible options. #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE float2 tile_uv = frac(tile_uv_wrap * 0.5) * 2.0; #else float2 tile_uv = frac(tile_uv_wrap); #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES const float2 tile_uv_dx = ddx(tile_uv); const float2 tile_uv_dy = ddy(tile_uv); tile_uv = fix_tiling_discontinuities_normalized(tile_uv, tile_uv_dx, tile_uv_dy); #endif // The tile is embedded in a padded FBO, and it may start at a // nonzero offset if border texels are used to avoid artifacts: const float2 mask_tex_uv = mask_tile_start_uv_and_size.xy + tile_uv * mask_tile_start_uv_and_size.zw; return mask_tex_uv; } else { // Sample from the input phosphor mask texture with hardware tiling. // If we're tiling at the original size (mode 2), the "tile" is the // whole texture, and it contains a large number of triads mapped with // a 1:1 pixel:texel ratio. OTHERWISE, the texture contains a single // unresized tile. tile_uv_wrap already has correct coords for both! return tile_uv_wrap; } } #endif // PHOSPHOR_MASK_RESIZING_H ///////////////////////// END PHOSPHOR-MASK-RESIZING ///////////////////////// //#include "scanline-functions.h" ///////////////////////////// BEGIN SCANLINE-FUNCTIONS //////////////////////////// #ifndef SCANLINE_FUNCTIONS_H #define SCANLINE_FUNCTIONS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA /////////////////////////////// BEGIN INCLUDES /////////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H //////////////////////////// END USER-SETTINGS ////////////////////////// //#include "derived-settings-and-constants.h" //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H #define DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////// DESCRIPTION //////////////////////////////// // These macros and constants can be used across the whole codebase. // Unlike the values in user-settings.cgh, end users shouldn't modify these. /////////////////////////////// BEGIN INCLUDES /////////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H ///////////////////////////// END USER-SETTINGS //////////////////////////// //#include "user-cgp-constants.h" ///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// #ifndef USER_CGP_CONSTANTS_H #define USER_CGP_CONSTANTS_H // IMPORTANT: // These constants MUST be set appropriately for the settings in crt-royale.cgp // (or whatever related .cgp file you're using). If they aren't, you're likely // to get artifacts, the wrong phosphor mask size, etc. I wish these could be // set directly in the .cgp file to make things easier, but...they can't. // PASS SCALES AND RELATED CONSTANTS: // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of // this shader: One does a viewport-scale bloom, and the other skips it. The // latter benefits from a higher bloom_approx_scale_x, so save both separately: static const float bloom_approx_size_x = 320.0; static const float bloom_approx_size_x_for_fake = 400.0; // Copy the viewport-relative scales of the phosphor mask resize passes // (MASK_RESIZE and the pass immediately preceding it): static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: static const float geom_max_aspect_ratio = 4.0/3.0; // PHOSPHOR MASK TEXTURE CONSTANTS: // Set the following constants to reflect the properties of the phosphor mask // texture named in crt-royale.cgp. The shader optionally resizes a mask tile // based on user settings, then repeats a single tile until filling the screen. // The shader must know the input texture size (default 64x64), and to manually // resize, it must also know the horizontal triads per tile (default 8). static const float2 mask_texture_small_size = float2(64.0, 64.0); static const float2 mask_texture_large_size = float2(512.0, 512.0); static const float mask_triads_per_tile = 8.0; // We need the average brightness of the phosphor mask to compensate for the // dimming it causes. The following four values are roughly correct for the // masks included with the shader. Update the value for any LUT texture you // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). //#define PHOSPHOR_MASK_GRILLE14 static const float mask_grille14_avg_color = 50.6666666/255.0; // TileableLinearApertureGrille14Wide7d33Spacing*.png // TileableLinearApertureGrille14Wide10And6Spacing*.png static const float mask_grille15_avg_color = 53.0/255.0; // TileableLinearApertureGrille15Wide6d33Spacing*.png // TileableLinearApertureGrille15Wide8And5d5Spacing*.png static const float mask_slot_avg_color = 46.0/255.0; // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png static const float mask_shadow_avg_color = 41.0/255.0; // TileableLinearShadowMask*.png // TileableLinearShadowMaskEDP*.png #ifdef PHOSPHOR_MASK_GRILLE14 static const float mask_grille_avg_color = mask_grille14_avg_color; #else static const float mask_grille_avg_color = mask_grille15_avg_color; #endif #endif // USER_CGP_CONSTANTS_H ////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// /////////////////////////////// FIXED SETTINGS /////////////////////////////// // Avoid dividing by zero; using a macro overloads for float, float2, etc.: #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. #ifndef SIMULATE_CRT_ON_LCD #define SIMULATE_CRT_ON_LCD #endif // Manually tiling a manually resized texture creates texture coord derivative // discontinuities and confuses anisotropic filtering, causing discolored tile // seams in the phosphor mask. Workarounds: // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. // b.) "Tile flat twice" requires drawing two full tiles without border padding // to the resized mask FBO, and it's incompatible with same-pass curvature. // (Same-pass curvature isn't used but could be in the future...maybe.) // c.) "Fix discontinuities" requires derivatives and drawing one tile with // border padding to the resized mask FBO, but it works with same-pass // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. // Precedence: a, then, b, then c (if multiple strategies are #defined). #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen // Also, manually resampling the phosphor mask is slightly blurrier with // anisotropic filtering. (Resampling with mipmapping is even worse: It // creates artifacts, but only with the fully bloomed shader.) The difference // is subtle with small triads, but you can fix it for a small cost. //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD ////////////////////////////// DERIVED SETTINGS ////////////////////////////// // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be // #defined by either user-settings.h or a wrapper .cg that #includes the // current .cg pass.) #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE #undef PHOSPHOR_MASK_MANUALLY_RESIZE #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is // inferior in most cases, so replace 2.0 with 0.0: static const float bloom_approx_filter = bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; #else static const float bloom_approx_filter = bloom_approx_filter_static; #endif // Disable slow runtime paths if static parameters are used. Most of these // won't be a problem anyway once the params are disabled, but some will. #ifndef RUNTIME_SHADER_PARAMS_ENABLE #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA #endif #ifdef RUNTIME_ANTIALIAS_WEIGHTS #undef RUNTIME_ANTIALIAS_WEIGHTS #endif #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #endif #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #endif #ifdef RUNTIME_GEOMETRY_TILT #undef RUNTIME_GEOMETRY_TILT #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // Make tex2Dbias a backup for tex2Dlod for wider compatibility. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif // Rule out unavailable anisotropic compatibility strategies: #ifndef DRIVERS_ALLOW_DERIVATIVES #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #ifndef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #endif #ifdef ANTIALIAS_DISABLE_ANISOTROPIC #undef ANTIALIAS_DISABLE_ANISOTROPIC #endif #endif #ifndef DRIVERS_ALLOW_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif // Prioritize anisotropic tiling compatibility strategies by performance and // disable unused strategies. This concentrates all the nesting in one place. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with // flat texture coords in the same pass, but that's all we use. #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #endif #endif // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can // reduce some #ifdef nesting in the next section by essentially OR'ing them: #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif // Prioritize anisotropic resampling compatibility strategies the same way: #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// // If we can use the large mipmapped LUT without mipmapping artifacts, we // should: It gives us more options for using fewer samples. #ifdef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD // TODO: Take advantage of this! #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT static const float2 mask_resize_src_lut_size = mask_texture_large_size; #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to // main_fragment, or a static alias of one of the above. This makes it hard // to select the phosphor mask at runtime: We can't even assign to a uniform // global in the vertex shader or select a sampler2D in the vertex shader and // pass it to the fragment shader (even with explicit TEXUNIT# bindings), // because it just gives us the input texture or a black screen. However, we // can get around these limitations by calling tex2D three times with different // uniform samplers (or resizing the phosphor mask three times altogether). // With dynamic branches, we can process only one of these branches on top of // quickly discarding fragments we don't need (cgc seems able to overcome // limigations around dependent texture fetches inside of branches). Without // dynamic branches, we have to process every branch for every fragment...which // is slower. Runtime sampling mode selection is slower without dynamic // branches as well. Let the user's static #defines decide if it's worth it. #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #else #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // We need to render some minimum number of tiles in the resize passes. // We need at least 1.0 just to repeat a single tile, and we need extra // padding beyond that for anisotropic filtering, discontinuitity fixing, // antialiasing, same-pass curvature (not currently used), etc. First // determine how many border texels and tiles we need, based on how the result // will be sampled: #ifdef GEOMETRY_EARLY static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; // Most antialiasing filters have a base radius of 4.0 pixels: static const float max_aa_base_pixel_border = 4.0 + max_subpixel_offset; #else static const float max_aa_base_pixel_border = 0.0; #endif // Anisotropic filtering adds about 0.5 to the pixel border: #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; #else static const float max_aniso_pixel_border = max_aa_base_pixel_border; #endif // Fixing discontinuities adds 1.0 more to the pixel border: #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; #else static const float max_tiled_pixel_border = max_aniso_pixel_border; #endif // Convert the pixel border to an integer texel border. Assume same-pass // curvature about triples the texel frequency: #ifdef GEOMETRY_EARLY static const float max_mask_texel_border = ceil(max_tiled_pixel_border * 3.0); #else static const float max_mask_texel_border = ceil(max_tiled_pixel_border); #endif // Convert the texel border to a tile border using worst-case assumptions: static const float max_mask_tile_border = max_mask_texel_border/ (mask_min_allowed_triad_size * mask_triads_per_tile); // Finally, set the number of resized tiles to render to MASK_RESIZE, and set // the starting texel (inside borders) for sampling it. #ifndef GEOMETRY_EARLY #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // Special case: Render two tiles without borders. Anisotropic // filtering doesn't seem to be a problem here. static const float mask_resize_num_tiles = 1.0 + 1.0; static const float mask_start_texels = 0.0; #else static const float mask_resize_num_tiles = 1.0 + 2.0 * max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif #else static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of // mask_resize_viewport_scale. This limits the maximum final triad size. // Estimate the minimum number of triads we can split the screen into in each // dimension (we'll be as correct as mask_resize_viewport_scale is): static const float mask_resize_num_triads = mask_resize_num_tiles * mask_triads_per_tile; static const float2 min_allowed_viewport_triads = float2(mask_resize_num_triads) / mask_resize_viewport_scale; //////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// static const float pi = 3.141592653589; // We often want to find the location of the previous texel, e.g.: // const float2 curr_texel = uv * texture_size; // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); // const float2 prev_texel_uv = prev_texel / texture_size; // However, many GPU drivers round incorrectly around exact texel locations. // We need to subtract a little less than 0.5 before flooring, and some GPU's // require this value to be farther from 0.5 than others; define it here. // const float2 prev_texel = // floor(curr_texel - float2(under_half)) + float2(0.5); static const float under_half = 0.4995; #endif // DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS //////////////////////////// //#include "../../../../include/special-functions.h" /////////////////////////// BEGIN SPECIAL-FUNCTIONS ////////////////////////// #ifndef SPECIAL_FUNCTIONS_H #define SPECIAL_FUNCTIONS_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file implements the following mathematical special functions: // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2)) // 2.) gamma(s), a real-numbered extension of the integer factorial function // It also implements normalized_ligamma(s, z), a normalized lower incomplete // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can // be called with an _impl suffix to use an implementation version with a few // extra precomputed parameters (which may be useful for the caller to reuse). // See below for details. // // Design Rationale: // Pretty much every line of code in this file is duplicated four times for // different input types (float4/float3/float2/float). This is unfortunate, // but Cg doesn't allow function templates. Macros would be far less verbose, // but they would make the code harder to document and read. I don't expect // these functions will require a whole lot of maintenance changes unless // someone ever has need for more robust incomplete gamma functions, so code // duplication seems to be the lesser evil in this case. /////////////////////////// GAUSSIAN ERROR FUNCTION ////////////////////////// float4 erf6(float4 x) { // Requires: x is the standard parameter to erf(). // Returns: Return an Abramowitz/Stegun approximation of erf(), where: // erf(x) = 2/sqrt(pi) * integral(e**(-x**2)) // This approximation has a max absolute error of 2.5*10**-5 // with solid numerical robustness and efficiency. See: // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions static const float4 one = float4(1.0); const float4 sign_x = sign(x); const float4 t = one/(one + 0.47047*abs(x)); const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float3 erf6(const float3 x) { // Float3 version: static const float3 one = float3(1.0); const float3 sign_x = sign(x); const float3 t = one/(one + 0.47047*abs(x)); const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float2 erf6(const float2 x) { // Float2 version: static const float2 one = float2(1.0); const float2 sign_x = sign(x); const float2 t = one/(one + 0.47047*abs(x)); const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float erf6(const float x) { // Float version: const float sign_x = sign(x); const float t = 1.0/(1.0 + 0.47047*abs(x)); const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float4 erft(const float4 x) { // Requires: x is the standard parameter to erf(). // Returns: Approximate erf() with the hyperbolic tangent. The error is // visually noticeable, but it's blazing fast and perceptually // close...at least on ATI hardware. See: // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html // Warning: Only use this if your hardware drivers correctly implement // tanh(): My nVidia 8800GTS returns garbage output. return tanh(1.202760580 * x); } float3 erft(const float3 x) { // Float3 version: return tanh(1.202760580 * x); } float2 erft(const float2 x) { // Float2 version: return tanh(1.202760580 * x); } float erft(const float x) { // Float version: return tanh(1.202760580 * x); } inline float4 erf(const float4 x) { // Requires: x is the standard parameter to erf(). // Returns: Some approximation of erf(x), depending on user settings. #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } inline float3 erf(const float3 x) { // Float3 version: #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } inline float2 erf(const float2 x) { // Float2 version: #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } inline float erf(const float x) { // Float version: #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } /////////////////////////// COMPLETE GAMMA FUNCTION ////////////////////////// float4 gamma_impl(const float4 s, const float4 s_inv) { // Requires: 1.) s is the standard parameter to the gamma function, and // it should lie in the [0, 36] range. // 2.) s_inv = 1.0/s. This implementation function requires // the caller to precompute this value, giving users the // opportunity to reuse it. // Returns: Return approximate gamma function (real-numbered factorial) // output using the Lanczos approximation with two coefficients // calculated using Paul Godfrey's method here: // http://my.fit.edu/~gabdo/gamma.txt // An optimal g value for s in [0, 36] is ~1.12906830989, with // a maximum relative error of 0.000463 for 2**16 equally // evals. We could use three coeffs (0.0000346 error) without // hurting latency, but this allows more parallelism with // outside instructions. static const float4 g = float4(1.12906830989); static const float4 c0 = float4(0.8109119309638332633713423362694399653724431); static const float4 c1 = float4(0.4808354605142681877121661197951496120000040); static const float4 e = float4(2.71828182845904523536028747135266249775724709); const float4 sph = s + float4(0.5); const float4 lanczos_sum = c0 + c1/(s + float4(1.0)); const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s). // This has less error for small s's than (s -= 1.0) at the beginning. return (pow(base, sph) * lanczos_sum) * s_inv; } float3 gamma_impl(const float3 s, const float3 s_inv) { // Float3 version: static const float3 g = float3(1.12906830989); static const float3 c0 = float3(0.8109119309638332633713423362694399653724431); static const float3 c1 = float3(0.4808354605142681877121661197951496120000040); static const float3 e = float3(2.71828182845904523536028747135266249775724709); const float3 sph = s + float3(0.5); const float3 lanczos_sum = c0 + c1/(s + float3(1.0)); const float3 base = (sph + g)/e; return (pow(base, sph) * lanczos_sum) * s_inv; } float2 gamma_impl(const float2 s, const float2 s_inv) { // Float2 version: static const float2 g = float2(1.12906830989); static const float2 c0 = float2(0.8109119309638332633713423362694399653724431); static const float2 c1 = float2(0.4808354605142681877121661197951496120000040); static const float2 e = float2(2.71828182845904523536028747135266249775724709); const float2 sph = s + float2(0.5); const float2 lanczos_sum = c0 + c1/(s + float2(1.0)); const float2 base = (sph + g)/e; return (pow(base, sph) * lanczos_sum) * s_inv; } float gamma_impl(const float s, const float s_inv) { // Float version: static const float g = 1.12906830989; static const float c0 = 0.8109119309638332633713423362694399653724431; static const float c1 = 0.4808354605142681877121661197951496120000040; static const float e = 2.71828182845904523536028747135266249775724709; const float sph = s + 0.5; const float lanczos_sum = c0 + c1/(s + 1.0); const float base = (sph + g)/e; return (pow(base, sph) * lanczos_sum) * s_inv; } float4 gamma(const float4 s) { // Requires: s is the standard parameter to the gamma function, and it // should lie in the [0, 36] range. // Returns: Return approximate gamma function output with a maximum // relative error of 0.000463. See gamma_impl for details. return gamma_impl(s, float4(1.0)/s); } float3 gamma(const float3 s) { // Float3 version: return gamma_impl(s, float3(1.0)/s); } float2 gamma(const float2 s) { // Float2 version: return gamma_impl(s, float2(1.0)/s); } float gamma(const float s) { // Float version: return gamma_impl(s, 1.0/s); } //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) /////////////// // Lower incomplete gamma function for small s and z (implementation): float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv) { // Requires: 1.) s < ~0.5 // 2.) z <= ~0.775075 // 3.) s_inv = 1.0/s (precomputed for outside reuse) // Returns: A series representation for the lower incomplete gamma // function for small s and small z (4 terms). // The actual "rolled up" summation looks like: // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0; // sum = last_sign * last_pow / ((s + k) * last_factorial) // for(int i = 0; i < 4; ++i) // { // last_sign *= -1.0; last_pow *= z; last_factorial *= i; // sum += last_sign * last_pow / ((s + k) * last_factorial); // } // Unrolled, constant-unfolded and arranged for madds and parallelism: const float4 scale = pow(z, s); float4 sum = s_inv; // Summation iteration 0 result // Summation iterations 1, 2, and 3: const float4 z_sq = z*z; const float4 denom1 = s + float4(1.0); const float4 denom2 = 2.0*s + float4(4.0); const float4 denom3 = 6.0*s + float4(18.0); //float4 denom4 = 24.0*s + float4(96.0); sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; //sum += z_sq * z_sq / denom4; // Scale and return: return scale * sum; } float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv) { // Float3 version: const float3 scale = pow(z, s); float3 sum = s_inv; const float3 z_sq = z*z; const float3 denom1 = s + float3(1.0); const float3 denom2 = 2.0*s + float3(4.0); const float3 denom3 = 6.0*s + float3(18.0); sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; return scale * sum; } float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv) { // Float2 version: const float2 scale = pow(z, s); float2 sum = s_inv; const float2 z_sq = z*z; const float2 denom1 = s + float2(1.0); const float2 denom2 = 2.0*s + float2(4.0); const float2 denom3 = 6.0*s + float2(18.0); sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; return scale * sum; } float ligamma_small_z_impl(const float s, const float z, const float s_inv) { // Float version: const float scale = pow(z, s); float sum = s_inv; const float z_sq = z*z; const float denom1 = s + 1.0; const float denom2 = 2.0*s + 4.0; const float denom3 = 6.0*s + 18.0; sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; return scale * sum; } // Upper incomplete gamma function for small s and large z (implementation): float4 uigamma_large_z_impl(const float4 s, const float4 z) { // Requires: 1.) s < ~0.5 // 2.) z > ~0.775075 // Returns: Gauss's continued fraction representation for the upper // incomplete gamma function (4 terms). // The "rolled up" continued fraction looks like this. The denominator // is truncated, and it's calculated "from the bottom up:" // denom = float4('inf'); // float4 one = float4(1.0); // for(int i = 4; i > 0; --i) // { // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom; // } // Unrolled and constant-unfolded for madds and parallelism: const float4 numerator = pow(z, s) * exp(-z); float4 denom = float4(7.0) + z - s; denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom; denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom; denom = float4(1.0) + z - s + (s - float4(1.0))/denom; return numerator / denom; } float3 uigamma_large_z_impl(const float3 s, const float3 z) { // Float3 version: const float3 numerator = pow(z, s) * exp(-z); float3 denom = float3(7.0) + z - s; denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom; denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom; denom = float3(1.0) + z - s + (s - float3(1.0))/denom; return numerator / denom; } float2 uigamma_large_z_impl(const float2 s, const float2 z) { // Float2 version: const float2 numerator = pow(z, s) * exp(-z); float2 denom = float2(7.0) + z - s; denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom; denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom; denom = float2(1.0) + z - s + (s - float2(1.0))/denom; return numerator / denom; } float uigamma_large_z_impl(const float s, const float z) { // Float version: const float numerator = pow(z, s) * exp(-z); float denom = 7.0 + z - s; denom = 5.0 + z - s + (3.0*s - 9.0)/denom; denom = 3.0 + z - s + (2.0*s - 4.0)/denom; denom = 1.0 + z - s + (s - 1.0)/denom; return numerator / denom; } // Normalized lower incomplete gamma function for small s (implementation): float4 normalized_ligamma_impl(const float4 s, const float4 z, const float4 s_inv, const float4 gamma_s_inv) { // Requires: 1.) s < ~0.5 // 2.) s_inv = 1/s (precomputed for outside reuse) // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse) // Returns: Approximate the normalized lower incomplete gamma function // for s < 0.5. Since we only care about s < 0.5, we only need // to evaluate two branches (not four) based on z. Each branch // uses four terms, with a max relative error of ~0.00182. The // branch threshold and specifics were adapted for fewer terms // from Gil/Segura/Temme's paper here: // http://oai.cwi.nl/oai/asset/20433/20433B.pdf // Evaluate both branches: Real branches test slower even when available. static const float4 thresh = float4(0.775075); bool4 z_is_large; z_is_large.x = z.x > thresh.x; z_is_large.y = z.y > thresh.y; z_is_large.z = z.z > thresh.z; z_is_large.w = z.w > thresh.w; const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; // Combine the results from both branches: bool4 inverse_z_is_large = not(z_is_large); return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large); } float3 normalized_ligamma_impl(const float3 s, const float3 z, const float3 s_inv, const float3 gamma_s_inv) { // Float3 version: static const float3 thresh = float3(0.775075); bool3 z_is_large; z_is_large.x = z.x > thresh.x; z_is_large.y = z.y > thresh.y; z_is_large.z = z.z > thresh.z; const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; bool3 inverse_z_is_large = not(z_is_large); return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large); } float2 normalized_ligamma_impl(const float2 s, const float2 z, const float2 s_inv, const float2 gamma_s_inv) { // Float2 version: static const float2 thresh = float2(0.775075); bool2 z_is_large; z_is_large.x = z.x > thresh.x; z_is_large.y = z.y > thresh.y; const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; bool2 inverse_z_is_large = not(z_is_large); return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large); } float normalized_ligamma_impl(const float s, const float z, const float s_inv, const float gamma_s_inv) { // Float version: static const float thresh = 0.775075; const bool z_is_large = z > thresh; const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv; const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; return large_z * float(z_is_large) + small_z * float(!z_is_large); } // Normalized lower incomplete gamma function for small s: float4 normalized_ligamma(const float4 s, const float4 z) { // Requires: s < ~0.5 // Returns: Approximate the normalized lower incomplete gamma function // for s < 0.5. See normalized_ligamma_impl() for details. const float4 s_inv = float4(1.0)/s; const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } float3 normalized_ligamma(const float3 s, const float3 z) { // Float3 version: const float3 s_inv = float3(1.0)/s; const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } float2 normalized_ligamma(const float2 s, const float2 z) { // Float2 version: const float2 s_inv = float2(1.0)/s; const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } float normalized_ligamma(const float s, const float z) { // Float version: const float s_inv = 1.0/s; const float gamma_s_inv = 1.0/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } #endif // SPECIAL_FUNCTIONS_H //////////////////////////// END SPECIAL-FUNCTIONS /////////////////////////// //#include "../../../../include/gamma-management.h" //////////////////////////// BEGIN GAMMA-MANAGEMENT ////////////////////////// #ifndef GAMMA_MANAGEMENT_H #define GAMMA_MANAGEMENT_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file provides gamma-aware tex*D*() and encode_output() functions. // Requires: Before #include-ing this file, the including file must #define // the following macros when applicable and follow their rules: // 1.) #define FIRST_PASS if this is the first pass. // 2.) #define LAST_PASS if this is the last pass. // 3.) If sRGB is available, set srgb_framebufferN = "true" for // every pass except the last in your .cgp preset. // 4.) If sRGB isn't available but you want gamma-correctness with // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass. // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7) // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7) // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7) // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -) // If an option in [5, 8] is #defined in the first or last pass, it // should be #defined for both. It shouldn't make a difference // whether it's #defined for intermediate passes or not. // Optional: The including file (or an earlier included file) may optionally // #define a number of macros indicating it will override certain // macros and associated constants are as follows: // static constants with either static or uniform constants. The // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define: // static const float ntsc_gamma // static const float pal_gamma // static const float crt_reference_gamma_high // static const float crt_reference_gamma_low // static const float lcd_reference_gamma // static const float crt_office_gamma // static const float lcd_office_gamma // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define: // static const float crt_gamma // static const float gba_gamma // static const float lcd_gamma // 3.) OVERRIDE_FINAL_GAMMA: The user must first define: // static const float input_gamma // static const float intermediate_gamma // static const float output_gamma // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.) // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define: // static const bool assume_opaque_alpha // The gamma constant overrides must be used in every pass or none, // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros. // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis. // Usage: After setting macros appropriately, ignore gamma correction and // replace all tex*D*() calls with equivalent gamma-aware // tex*D*_linearize calls, except: // 1.) When you read an LUT, use regular tex*D or a gamma-specified // function, depending on its gamma encoding: // tex*D*_linearize_gamma (takes a runtime gamma parameter) // 2.) If you must read pass0's original input in a later pass, use // tex2D_linearize_ntsc_gamma. If you want to read pass0's // input with gamma-corrected bilinear filtering, consider // creating a first linearizing pass and reading from the input // of pass1 later. // Then, return encode_output(color) from every fragment shader. // Finally, use the global gamma_aware_bilinear boolean if you want // to statically branch based on whether bilinear filtering is // gamma-correct or not (e.g. for placing Gaussian blur samples). // // Detailed Policy: // tex*D*_linearize() functions enforce a consistent gamma-management policy // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume // their input texture has the same encoding characteristics as the input for // the current pass (which doesn't apply to the exceptions listed above). // Similarly, encode_output() enforces a policy based on the LAST_PASS and // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the // following two pipelines. // Typical pipeline with intermediate sRGB framebuffers: // linear_color = pow(pass0_encoded_color, input_gamma); // intermediate_output = linear_color; // Automatic sRGB encoding // linear_color = intermediate_output; // Automatic sRGB decoding // final_output = pow(intermediate_output, 1.0/output_gamma); // Typical pipeline without intermediate sRGB framebuffers: // linear_color = pow(pass0_encoded_color, input_gamma); // intermediate_output = pow(linear_color, 1.0/intermediate_gamma); // linear_color = pow(intermediate_output, intermediate_gamma); // final_output = pow(intermediate_output, 1.0/output_gamma); // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to // easily get gamma-correctness without banding on devices where sRGB isn't // supported. // // Use This Header to Maximize Code Reuse: // The purpose of this header is to provide a consistent interface for texture // reads and output gamma-encoding that localizes and abstracts away all the // annoying details. This greatly reduces the amount of code in each shader // pass that depends on the pass number in the .cgp preset or whether sRGB // FBO's are being used: You can trivially change the gamma behavior of your // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same // code in your first, Nth, and last passes, you can even put it all in another // header file and #include it from skeleton .cg files that #define the // appropriate pass-specific settings. // // Rationale for Using Three Macros: // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes // a lower maintenance burden on each pass. At first glance it seems we could // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT. // This works for simple use cases where input_gamma == output_gamma, but it // breaks down for more complex scenarios like CRT simulation, where the pass // number determines the gamma encoding of the input and output. /////////////////////////////// BASE CONSTANTS /////////////////////////////// // Set standard gamma constants, but allow users to override them: #ifndef OVERRIDE_STANDARD_GAMMA // Standard encoding gammas: static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? static const float pal_gamma = 2.8; // Never actually 2.8 in practice // Typical device decoding gammas (only use for emulating devices): // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard // gammas: The standards purposely undercorrected for an analog CRT's // assumed 2.5 reference display gamma to maintain contrast in assumed // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf // These unstated assumptions about display gamma and perceptual rendering // intent caused a lot of confusion, and more modern CRT's seemed to target // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit // (they struggle near black with 2.5 gamma anyway), especially PC/laptop // displays designed to view sRGB in bright environments. (Standards are // also in flux again with BT.1886, but it's underspecified for displays.) static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) static const float lcd_reference_gamma = 2.5; // To match CRT static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC static const float lcd_office_gamma = 2.2; // Approximates sRGB #endif // OVERRIDE_STANDARD_GAMMA // Assuming alpha == 1.0 might make it easier for users to avoid some bugs, // but only if they're aware of it. #ifndef OVERRIDE_ALPHA_ASSUMPTIONS static const bool assume_opaque_alpha = false; #endif /////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// // gamma-management.h should be compatible with overriding gamma values with // runtime user parameters, but we can only define other global constants in // terms of static constants, not uniform user parameters. To get around this // limitation, we need to define derived constants using functions. // Set device gamma constants, but allow users to override them: #ifdef OVERRIDE_DEVICE_GAMMA // The user promises to globally define the appropriate constants: inline float get_crt_gamma() { return crt_gamma; } inline float get_gba_gamma() { return gba_gamma; } inline float get_lcd_gamma() { return lcd_gamma; } #else inline float get_crt_gamma() { return crt_reference_gamma_high; } inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) inline float get_lcd_gamma() { return lcd_office_gamma; } #endif // OVERRIDE_DEVICE_GAMMA // Set decoding/encoding gammas for the first/lass passes, but allow overrides: #ifdef OVERRIDE_FINAL_GAMMA // The user promises to globally define the appropriate constants: inline float get_intermediate_gamma() { return intermediate_gamma; } inline float get_input_gamma() { return input_gamma; } inline float get_output_gamma() { return output_gamma; } #else // If we gamma-correct every pass, always use ntsc_gamma between passes to // ensure middle passes don't need to care if anything is being simulated: inline float get_intermediate_gamma() { return ntsc_gamma; } #ifdef SIMULATE_CRT_ON_LCD inline float get_input_gamma() { return get_crt_gamma(); } inline float get_output_gamma() { return get_lcd_gamma(); } #else #ifdef SIMULATE_GBA_ON_LCD inline float get_input_gamma() { return get_gba_gamma(); } inline float get_output_gamma() { return get_lcd_gamma(); } #else #ifdef SIMULATE_LCD_ON_CRT inline float get_input_gamma() { return get_lcd_gamma(); } inline float get_output_gamma() { return get_crt_gamma(); } #else #ifdef SIMULATE_GBA_ON_CRT inline float get_input_gamma() { return get_gba_gamma(); } inline float get_output_gamma() { return get_crt_gamma(); } #else // Don't simulate anything: inline float get_input_gamma() { return ntsc_gamma; } inline float get_output_gamma() { return ntsc_gamma; } #endif // SIMULATE_GBA_ON_CRT #endif // SIMULATE_LCD_ON_CRT #endif // SIMULATE_GBA_ON_LCD #endif // SIMULATE_CRT_ON_LCD #endif // OVERRIDE_FINAL_GAMMA // Set decoding/encoding gammas for the current pass. Use static constants for // linearize_input and gamma_encode_output, because they aren't derived, and // they let the compiler do dead-code elimination. #ifndef GAMMA_ENCODE_EVERY_FBO #ifdef FIRST_PASS static const bool linearize_input = true; inline float get_pass_input_gamma() { return get_input_gamma(); } #else static const bool linearize_input = false; inline float get_pass_input_gamma() { return 1.0; } #endif #ifdef LAST_PASS static const bool gamma_encode_output = true; inline float get_pass_output_gamma() { return get_output_gamma(); } #else static const bool gamma_encode_output = false; inline float get_pass_output_gamma() { return 1.0; } #endif #else static const bool linearize_input = true; static const bool gamma_encode_output = true; #ifdef FIRST_PASS inline float get_pass_input_gamma() { return get_input_gamma(); } #else inline float get_pass_input_gamma() { return get_intermediate_gamma(); } #endif #ifdef LAST_PASS inline float get_pass_output_gamma() { return get_output_gamma(); } #else inline float get_pass_output_gamma() { return get_intermediate_gamma(); } #endif #endif // Users might want to know if bilinear filtering will be gamma-correct: static const bool gamma_aware_bilinear = !linearize_input; ////////////////////// COLOR ENCODING/DECODING FUNCTIONS ///////////////////// inline float4 encode_output(const float4 color) { if(gamma_encode_output) { if(assume_opaque_alpha) { return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0); } else { return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a); } } else { return color; } } inline float4 decode_input(const float4 color) { if(linearize_input) { if(assume_opaque_alpha) { return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0); } else { return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a); } } else { return color; } } inline float4 decode_gamma_input(const float4 color, const float3 gamma) { if(assume_opaque_alpha) { return float4(pow(color.rgb, gamma), 1.0); } else { return float4(pow(color.rgb, gamma), color.a); } } //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯ //#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D))) // EDIT: it's the 'const' in front of the coords that's doing it /////////////////////////// TEXTURE LOOKUP WRAPPERS ////////////////////////// // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: // Provide a wide array of linearizing texture lookup wrapper functions. The // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D // lookups are provided for completeness in case that changes someday. Nobody // is likely to use the *fetch and *proj functions, but they're included just // in case. The only tex*D texture sampling functions omitted are: // - tex*Dcmpbias // - tex*Dcmplod // - tex*DARRAY* // - tex*DMS* // - Variants returning integers // Standard line length restrictions are ignored below for vertical brevity. /* // tex1D: inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords) { return decode_input(tex1D(tex, tex_coords)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords) { return decode_input(tex1D(tex, tex_coords)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off) { return decode_input(tex1D(tex, tex_coords, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) { return decode_input(tex1D(tex, tex_coords, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy) { return decode_input(tex1D(tex, tex_coords, dx, dy)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy) { return decode_input(tex1D(tex, tex_coords, dx, dy)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off) { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off) { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } // tex1Dbias: inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords) { return decode_input(tex1Dbias(tex, tex_coords)); } inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); } // tex1Dfetch: inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords) { return decode_input(tex1Dfetch(tex, tex_coords)); } inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off) { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); } // tex1Dlod: inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords) { return decode_input(tex1Dlod(tex, tex_coords)); } inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); } // tex1Dproj: inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords) { return decode_input(tex1Dproj(tex, tex_coords)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords) { return decode_input(tex1Dproj(tex, tex_coords)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } */ // tex2D: inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords) { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); } inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords) { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); } inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords, texel_off)); } inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } // tex2Dbias: //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords) //{ return decode_input(tex2Dbias(tex, tex_coords)); } //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); } // tex2Dfetch: //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords) //{ return decode_input(tex2Dfetch(tex, tex_coords)); } //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off) //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); } // tex2Dlod: inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords) { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); } inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } /* // tex2Dproj: inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords) { return decode_input(tex2Dproj(tex, tex_coords)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords) { return decode_input(tex2Dproj(tex, tex_coords)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } */ /* // tex3D: inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords) { return decode_input(tex3D(tex, tex_coords)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex3D(tex, tex_coords, texel_off)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy) { return decode_input(tex3D(tex, tex_coords, dx, dy)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off) { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); } // tex3Dbias: inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dbias(tex, tex_coords)); } inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); } // tex3Dfetch: inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords) { return decode_input(tex3Dfetch(tex, tex_coords)); } inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off) { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); } // tex3Dlod: inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dlod(tex, tex_coords)); } inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); } // tex3Dproj: inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dproj(tex, tex_coords)); } inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); } /////////* // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: // This narrow selection of nonstandard tex2D* functions can be useful: // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0. //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords) //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); } //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off) //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); } // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS: // Provide a narrower selection of tex2D* wrapper functions that decode an // input sample with a specified gamma value. These are useful for reading // LUT's and for reading the input of pass0 in a later pass. // tex2D: inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma) { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); } inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma) { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } /* // tex2Dbias: inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma) { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); } inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma) { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); } // tex2Dfetch: inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma) { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); } inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma) { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); } */ // tex2Dlod: inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma) { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); } inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma) { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); } #endif // GAMMA_MANAGEMENT_H //////////////////////////// END GAMMA-MANAGEMENT ////////////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// ///////////////////////////// SCANLINE FUNCTIONS ///////////////////////////// inline float3 get_gaussian_sigma(const float3 color, const float sigma_range) { // Requires: Globals: // 1.) beam_min_sigma and beam_max_sigma are global floats // containing the desired minimum and maximum beam standard // deviations, for dim and bright colors respectively. // 2.) beam_max_sigma must be > 0.0 // 3.) beam_min_sigma must be in (0.0, beam_max_sigma] // 4.) beam_spot_power must be defined as a global float. // Parameters: // 1.) color is the underlying source color along a scanline // 2.) sigma_range = beam_max_sigma - beam_min_sigma; we take // sigma_range as a parameter to avoid repeated computation // when beam_{min, max}_sigma are runtime shader parameters // Optional: Users may set beam_spot_shape_function to 1 to define the // inner f(color) subfunction (see below) as: // f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0)) // Otherwise (technically, if beam_spot_shape_function < 0.5): // f(color) = pow(color, beam_spot_power) // Returns: The standard deviation of the Gaussian beam for "color:" // sigma = beam_min_sigma + sigma_range * f(color) // Details/Discussion: // The beam's spot shape vaguely resembles an aspect-corrected f() in the // range [0, 1] (not quite, but it's related). f(color) = color makes // spots look like diamonds, and a spherical function or cube balances // between variable width and a soft/realistic shape. A beam_spot_power // > 1.0 can produce an ugly spot shape and more initial clipping, but the // final shape also differs based on the horizontal resampling filter and // the phosphor bloom. For instance, resampling horizontally in nonlinear // light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot // shape, but a sixth root is still quite soft. A power function (default // 1.0/3.0 beam_spot_power) is most flexible, but a fixed spherical curve // has the highest variability without an awful spot shape. // // beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its // difference from beam_max_sigma affects beam width variability. It only // affects clipping [for pure Gaussians] if beam_spot_power > 1.0 (which is // a conservative estimate for a more complex constraint). // // beam_max_sigma affects clipping and increasing scanline width/softness // as color increases. The wider this is, the more scanlines need to be // evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma // at which the first unused scanline always has a weight < 1.0/255.0 is: // num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34 // num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52 // num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70 // num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89 // num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08 // Generalized Gaussians permit more leeway here as steepness increases. if(beam_spot_shape_function < 0.5) { // Use a power function: return float3(beam_min_sigma) + sigma_range * pow(color, float3(beam_spot_power)); } else { // Use a spherical function: const float3 color_minus_1 = color - float3(1.0); return float3(beam_min_sigma) + sigma_range * sqrt(float3(1.0) - color_minus_1*color_minus_1); } } inline float3 get_generalized_gaussian_beta(const float3 color, const float shape_range) { // Requires: Globals: // 1.) beam_min_shape and beam_max_shape are global floats // containing the desired min/max generalized Gaussian // beta parameters, for dim and bright colors respectively. // 2.) beam_max_shape must be >= 2.0 // 3.) beam_min_shape must be in [2.0, beam_max_shape] // 4.) beam_shape_power must be defined as a global float. // Parameters: // 1.) color is the underlying source color along a scanline // 2.) shape_range = beam_max_shape - beam_min_shape; we take // shape_range as a parameter to avoid repeated computation // when beam_{min, max}_shape are runtime shader parameters // Returns: The type-I generalized Gaussian "shape" parameter beta for // the given color. // Details/Discussion: // Beta affects the scanline distribution as follows: // a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope // b.) beta == 2.0 just degenerates to a Gaussian // c.) beta > 2.0 flattens and widens the peak, then drops off more steeply // than a Gaussian. Whereas high sigmas widen and soften peaks, high // beta widen and sharpen peaks at the risk of aliasing. // Unlike high beam_spot_powers, high beam_shape_powers actually soften shape // transitions, whereas lower ones sharpen them (at the risk of aliasing). return beam_min_shape + shape_range * pow(color, float3(beam_shape_power)); } float3 scanline_gaussian_integral_contrib(const float3 dist, const float3 color, const float pixel_height, const float sigma_range) { // Requires: 1.) dist is the distance of the [potentially separate R/G/B] // point(s) from a scanline in units of scanlines, where // 1.0 means the sample point straddles the next scanline. // 2.) color is the underlying source color along a scanline. // 3.) pixel_height is the output pixel height in scanlines. // 4.) Requirements of get_gaussian_sigma() must be met. // Returns: Return a scanline's light output over a given pixel. // Details: // The CRT beam profile follows a roughly Gaussian distribution which is // wider for bright colors than dark ones. The integral over the full // range of a Gaussian function is always 1.0, so we can vary the beam // with a standard deviation without affecting brightness. 'x' = distance: // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2)) // gaussian integral = 0.5 (1.0 + erf(x/(sigma * sqrt(2)))) // Use a numerical approximation of the "error function" (the Gaussian // indefinite integral) to find the definite integral of the scanline's // average brightness over a given pixel area. Even if curved coords were // used in this pass, a flat scalar pixel height works almost as well as a // pixel height computed from a full pixel-space to scanline-space matrix. const float3 sigma = get_gaussian_sigma(color, sigma_range); const float3 ph_offset = float3(pixel_height * 0.5); const float3 denom_inv = 1.0/(sigma*sqrt(2.0)); const float3 integral_high = erf((dist + ph_offset)*denom_inv); const float3 integral_low = erf((dist - ph_offset)*denom_inv); return color * 0.5*(integral_high - integral_low)/pixel_height; } float3 scanline_generalized_gaussian_integral_contrib(float3 dist, float3 color, float pixel_height, float sigma_range, float shape_range) { // Requires: 1.) Requirements of scanline_gaussian_integral_contrib() // must be met. // 2.) Requirements of get_gaussian_sigma() must be met. // 3.) Requirements of get_generalized_gaussian_beta() must be // met. // Returns: Return a scanline's light output over a given pixel. // A generalized Gaussian distribution allows the shape (beta) to vary // as well as the width (alpha). "gamma" refers to the gamma function: // generalized sample = // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta) // ligamma(s, z) is the lower incomplete gamma function, for which we only // implement two of four branches (because we keep 1/beta <= 0.5): // generalized integral = 0.5 + 0.5* sign(x) * // ligamma(1/beta, (|x|/alpha)**beta)/gamma(1/beta) // See get_generalized_gaussian_beta() for a discussion of beta. // We base alpha on the intended Gaussian sigma, but it only strictly // models models standard deviation at beta == 2, because the standard // deviation depends on both alpha and beta (keeping alpha independent is // faster and preserves intuitive behavior and a full spectrum of results). const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range); const float3 beta = get_generalized_gaussian_beta(color, shape_range); const float3 alpha_inv = float3(1.0)/alpha; const float3 s = float3(1.0)/beta; const float3 ph_offset = float3(pixel_height * 0.5); // Pass beta to gamma_impl to avoid repeated divides. Similarly pass // beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl. const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, beta); const float3 dist1 = dist + ph_offset; const float3 dist0 = dist - ph_offset; const float3 integral_high = sign(dist1) * normalized_ligamma_impl( s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv); const float3 integral_low = sign(dist0) * normalized_ligamma_impl( s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv); return color * 0.5*(integral_high - integral_low)/pixel_height; } float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color, const float pixel_height, const float sigma_range) { // See scanline_gaussian integral_contrib() for detailed comments! // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2)) const float3 sigma = get_gaussian_sigma(color, sigma_range); // Avoid repeated divides: const float3 sigma_inv = float3(1.0)/sigma; const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv; const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi); if(beam_antialias_level > 0.5) { // Sample 1/3 pixel away in each direction as well: const float3 sample_offset = float3(pixel_height/3.0); const float3 dist2 = dist + sample_offset; const float3 dist3 = abs(dist - sample_offset); // Average three pure Gaussian samples: const float3 scale = color/3.0 * outer_denom_inv; const float3 weight1 = exp(-(dist*dist)*inner_denom_inv); const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv); const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv); return scale * (weight1 + weight2 + weight3); } else { return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv; } } float3 scanline_generalized_gaussian_sampled_contrib(float3 dist, float3 color, float pixel_height, float sigma_range, float shape_range) { // See scanline_generalized_gaussian_integral_contrib() for details! // generalized sample = // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta) const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range); const float3 beta = get_generalized_gaussian_beta(color, shape_range); // Avoid repeated divides: const float3 alpha_inv = float3(1.0)/alpha; const float3 beta_inv = float3(1.0)/beta; const float3 scale = color * beta * 0.5 * alpha_inv / gamma_impl(beta_inv, beta); if(beam_antialias_level > 0.5) { // Sample 1/3 pixel closer to and farther from the scanline too. const float3 sample_offset = float3(pixel_height/3.0); const float3 dist2 = dist + sample_offset; const float3 dist3 = abs(dist - sample_offset); // Average three generalized Gaussian samples: const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta)); const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta)); const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta)); return scale/3.0 * (weight1 + weight2 + weight3); } else { return scale * exp(-pow(abs(dist*alpha_inv), beta)); } } inline float3 scanline_contrib(float3 dist, float3 color, float pixel_height, const float sigma_range, const float shape_range) { // Requires: 1.) Requirements of scanline_gaussian_integral_contrib() // must be met. // 2.) Requirements of get_gaussian_sigma() must be met. // 3.) Requirements of get_generalized_gaussian_beta() must be // met. // Returns: Return a scanline's light output over a given pixel, using // a generalized or pure Gaussian distribution and sampling or // integrals as desired by user codepath choices. if(beam_generalized_gaussian) { if(beam_antialias_level > 1.5) { return scanline_generalized_gaussian_integral_contrib( dist, color, pixel_height, sigma_range, shape_range); } else { return scanline_generalized_gaussian_sampled_contrib( dist, color, pixel_height, sigma_range, shape_range); } } else { if(beam_antialias_level > 1.5) { return scanline_gaussian_integral_contrib( dist, color, pixel_height, sigma_range); } else { return scanline_gaussian_sampled_contrib( dist, color, pixel_height, sigma_range); } } } inline float3 get_raw_interpolated_color(const float3 color0, const float3 color1, const float3 color2, const float3 color3, const float4 weights) { // Use max to avoid bizarre artifacts from negative colors: return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0); } float3 get_interpolated_linear_color(const float3 color0, const float3 color1, const float3 color2, const float3 color3, const float4 weights) { // Requires: 1.) Requirements of include/gamma-management.h must be met: // intermediate_gamma must be globally defined, and input // colors are interpreted as linear RGB unless you #define // GAMMA_ENCODE_EVERY_FBO (in which case they are // interpreted as gamma-encoded with intermediate_gamma). // 2.) color0-3 are colors sampled from a texture with tex2D(). // They are interpreted as defined in requirement 1. // 3.) weights contains weights for each color, summing to 1.0. // 4.) beam_horiz_linear_rgb_weight must be defined as a global // float in [0.0, 1.0] describing how much blending should // be done in linear RGB (rest is gamma-corrected RGB). // 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined // if beam_horiz_linear_rgb_weight is anything other than a // static constant, or we may try branching at runtime // without dynamic branches allowed (slow). // Returns: Return an interpolated color lookup between the four input // colors based on the weights in weights. The final color will // be a linear RGB value, but the blending will be done as // indicated above. const float intermediate_gamma = get_intermediate_gamma(); // Branch if beam_horiz_linear_rgb_weight is static (for free) or if the // profile allows dynamic branches (faster than computing extra pows): #ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT #else #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT #endif #endif #ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT // beam_horiz_linear_rgb_weight is static, so we can branch: #ifdef GAMMA_ENCODE_EVERY_FBO const float3 gamma_mixed_color = pow(get_raw_interpolated_color( color0, color1, color2, color3, weights), float3(intermediate_gamma)); if(beam_horiz_linear_rgb_weight > 0.0) { const float3 linear_mixed_color = get_raw_interpolated_color( pow(color0, float3(intermediate_gamma)), pow(color1, float3(intermediate_gamma)), pow(color2, float3(intermediate_gamma)), pow(color3, float3(intermediate_gamma)), weights); return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight); } else { return gamma_mixed_color; } #else const float3 linear_mixed_color = get_raw_interpolated_color( color0, color1, color2, color3, weights); if(beam_horiz_linear_rgb_weight < 1.0) { const float3 gamma_mixed_color = get_raw_interpolated_color( pow(color0, float3(1.0/intermediate_gamma)), pow(color1, float3(1.0/intermediate_gamma)), pow(color2, float3(1.0/intermediate_gamma)), pow(color3, float3(1.0/intermediate_gamma)), weights); return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight); } else { return linear_mixed_color; } #endif // GAMMA_ENCODE_EVERY_FBO #else #ifdef GAMMA_ENCODE_EVERY_FBO // Inputs: color0-3 are colors in gamma-encoded RGB. const float3 gamma_mixed_color = pow(get_raw_interpolated_color( color0, color1, color2, color3, weights), intermediate_gamma); const float3 linear_mixed_color = get_raw_interpolated_color( pow(color0, float3(intermediate_gamma)), pow(color1, float3(intermediate_gamma)), pow(color2, float3(intermediate_gamma)), pow(color3, float3(intermediate_gamma)), weights); return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight); #else // Inputs: color0-3 are colors in linear RGB. const float3 linear_mixed_color = get_raw_interpolated_color( color0, color1, color2, color3, weights); const float3 gamma_mixed_color = get_raw_interpolated_color( pow(color0, float3(1.0/intermediate_gamma)), pow(color1, float3(1.0/intermediate_gamma)), pow(color2, float3(1.0/intermediate_gamma)), pow(color3, float3(1.0/intermediate_gamma)), weights); // wtf fixme // const float beam_horiz_linear_rgb_weight1 = 1.0; return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight); #endif // GAMMA_ENCODE_EVERY_FBO #endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT } float3 get_scanline_color(const sampler2D tex, const float2 scanline_uv, const float2 uv_step_x, const float4 weights) { // Requires: 1.) scanline_uv must be vertically snapped to the caller's // desired line or scanline and horizontally snapped to the // texel just left of the output pixel (color1) // 2.) uv_step_x must contain the horizontal uv distance // between texels. // 3.) weights must contain interpolation filter weights for // color0, color1, color2, and color3, where color1 is just // left of the output pixel. // Returns: Return a horizontally interpolated texture lookup using 2-4 // nearby texels, according to weights and the conventions of // get_interpolated_linear_color(). // We can ignore the outside texture lookups for Quilez resampling. const float3 color1 = COMPAT_TEXTURE(tex, scanline_uv).rgb; const float3 color2 = COMPAT_TEXTURE(tex, scanline_uv + uv_step_x).rgb; float3 color0 = float3(0.0); float3 color3 = float3(0.0); if(beam_horiz_filter > 0.5) { color0 = COMPAT_TEXTURE(tex, scanline_uv - uv_step_x).rgb; color3 = COMPAT_TEXTURE(tex, scanline_uv + 2.0 * uv_step_x).rgb; } // Sample the texture as-is, whether it's linear or gamma-encoded: // get_interpolated_linear_color() will handle the difference. return get_interpolated_linear_color(color0, color1, color2, color3, weights); } float3 sample_single_scanline_horizontal(const sampler2D tex, const float2 tex_uv, const float2 tex_size, const float2 texture_size_inv) { // TODO: Add function requirements. // Snap to the previous texel and get sample dists from 2/4 nearby texels: const float2 curr_texel = tex_uv * tex_size; // Use under_half to fix a rounding bug right around exact texel locations. const float2 prev_texel = floor(curr_texel - float2(under_half)) + float2(0.5); const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y); const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv; const float prev_dist = curr_texel.x - prev_texel_hor.x; const float4 sample_dists = float4(1.0 + prev_dist, prev_dist, 1.0 - prev_dist, 2.0 - prev_dist); // Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels: float4 weights; if(beam_horiz_filter < 0.5) { // Quilez: const float x = sample_dists.y; const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0); weights = float4(0.0, 1.0 - w2, w2, 0.0); } else if(beam_horiz_filter < 1.5) { // Gaussian: float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma); weights = exp(-(sample_dists*sample_dists)*inner_denom_inv); } else { // Lanczos2: const float4 pi_dists = FIX_ZERO(sample_dists * pi); weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) / (pi_dists * pi_dists); } // Ensure the weight sum == 1.0: const float4 final_weights = weights/dot(weights, float4(1.0)); // Get the interpolated horizontal scanline color: const float2 uv_step_x = float2(texture_size_inv.x, 0.0); return get_scanline_color( tex, prev_texel_hor_uv, uv_step_x, final_weights); } float3 sample_rgb_scanline_horizontal(const sampler2D tex, const float2 tex_uv, const float2 tex_size, const float2 texture_size_inv) { // TODO: Add function requirements. // Rely on a helper to make convergence easier. if(beam_misconvergence) { const float3 convergence_offsets_rgb = get_convergence_offsets_x_vector(); const float3 offset_u_rgb = convergence_offsets_rgb * texture_size_inv.xxx; const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0); const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0); const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0); const float3 sample_r = sample_single_scanline_horizontal( tex, scanline_uv_r, tex_size, texture_size_inv); const float3 sample_g = sample_single_scanline_horizontal( tex, scanline_uv_g, tex_size, texture_size_inv); const float3 sample_b = sample_single_scanline_horizontal( tex, scanline_uv_b, tex_size, texture_size_inv); return float3(sample_r.r, sample_g.g, sample_b.b); } else { return sample_single_scanline_horizontal(tex, tex_uv, tex_size, texture_size_inv); } } float2 get_last_scanline_uv(const float2 tex_uv, const float2 tex_size, const float2 texture_size_inv, const float2 il_step_multiple, const float frame_count, out float dist) { // Compute texture coords for the last/upper scanline, accounting for // interlacing: With interlacing, only consider even/odd scanlines every // other frame. Top-field first (TFF) order puts even scanlines on even // frames, and BFF order puts them on odd frames. Texels are centered at: // frac(tex_uv * tex_size) == x.5 // Caution: If these coordinates ever seem incorrect, first make sure it's // not because anisotropic filtering is blurring across field boundaries. // Note: TFF/BFF won't matter for sources that double-weave or similar. // wtf fixme // const float interlace_bff1 = 1.0; const float field_offset = floor(il_step_multiple.y * 0.75) * fmod(frame_count + float(interlace_bff), 2.0); const float2 curr_texel = tex_uv * tex_size; // Use under_half to fix a rounding bug right around exact texel locations. const float2 prev_texel_num = floor(curr_texel - float2(under_half)); const float wrong_field = fmod( prev_texel_num.y + field_offset, il_step_multiple.y); const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field); // Snap to the center of the previous scanline in the current field: const float2 scanline_texel = scanline_texel_num + float2(0.5); const float2 scanline_uv = scanline_texel * texture_size_inv; // Save the sample's distance from the scanline, in units of scanlines: dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y; return scanline_uv; } inline bool is_interlaced(float num_lines) { // Detect interlacing based on the number of lines in the source. if(interlace_detect) { // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field // NTSC Emulators: Typically 224 or 240 lines // PAL: 625 lines, 312.5/field; 576 active (typical), 288/field // PAL Emulators: ? // ATSC: 720p, 1080i, 1080p // Where do we place our cutoffs? Assumptions: // 1.) We only need to care about active lines. // 2.) Anything > 288 and <= 576 lines is probably interlaced. // 3.) Anything > 576 lines is probably not interlaced... // 4.) ...except 1080 lines, which is a crapshoot (user decision). // 5.) Just in case the main program uses calculated video sizes, // we should nudge the float thresholds a bit. const bool sd_interlace = ((num_lines > 288.5) && (num_lines < 576.5)); const bool hd_interlace = bool(interlace_1080i) ? ((num_lines > 1079.5) && (num_lines < 1080.5)) : false; return (sd_interlace || hd_interlace); } else { return false; } } #endif // SCANLINE_FUNCTIONS_H ///////////////////////////// END SCANLINE-FUNCTIONS //////////////////////////// /////////////////////////////// END VERTEX-INCLUDES ///////////////////////////// #undef COMPAT_PRECISION #undef COMPAT_TEXTURE float bloom_approx_scale_x = targetSize.x / sourceSize[0].y; const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0); const float bloom_diff_thresh_ = 1.0/256.0; ////////////////////////////// FRAGMENT INCLUDES ////////////////////////////// //#include "bloom-functions.h" //////////////////////////// BEGIN BLOOM-FUNCTIONS /////////////////////////// #ifndef BLOOM_FUNCTIONS_H #define BLOOM_FUNCTIONS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////// DESCRIPTION //////////////////////////////// // These utility functions and constants help several passes determine the // size and center texel weight of the phosphor bloom in a uniform manner. ////////////////////////////////// INCLUDES ////////////////////////////////// // We need to calculate the correct blur sigma using some .cgp constants: //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H //////////////////////////// END USER-SETTINGS ////////////////////////// //#include "derived-settings-and-constants.h" //////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// #ifndef DERIVED_SETTINGS_AND_CONSTANTS_H #define DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////// DESCRIPTION //////////////////////////////// // These macros and constants can be used across the whole codebase. // Unlike the values in user-settings.cgh, end users shouldn't modify these. /////////////////////////////// BEGIN INCLUDES /////////////////////////////// //#include "../user-settings.h" ///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// #ifndef USER_SETTINGS_H #define USER_SETTINGS_H ///////////////////////////// DRIVER CAPABILITIES //////////////////////////// // The Cg compiler uses different "profiles" with different capabilities. // This shader requires a Cg compilation profile >= arbfp1, but a few options // require higher profiles like fp30 or fp40. The shader can't detect profile // or driver capabilities, so instead you must comment or uncomment the lines // below with "//" before "#define." Disable an option if you get compilation // errors resembling those listed. Generally speaking, all of these options // will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is // likely to run on ATI/AMD, due to the Cg compiler's profile limitations. // Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. // Among other things, derivatives help us fix anisotropic filtering artifacts // with curved manually tiled phosphor mask coords. Related errors: // error C3004: function "float2 ddx(float2);" not supported in this profile // error C3004: function "float2 ddy(float2);" not supported in this profile //#define DRIVERS_ALLOW_DERIVATIVES // Fine derivatives: Unsupported on older ATI cards. // Fine derivatives enable 2x2 fragment block communication, letting us perform // fast single-pass blur operations. If your card uses coarse derivatives and // these are enabled, blurs could look broken. Derivatives are a prerequisite. #ifdef DRIVERS_ALLOW_DERIVATIVES #define DRIVERS_ALLOW_FINE_DERIVATIVES #endif // Dynamic looping: Requires an fp30 or newer profile. // This makes phosphor mask resampling faster in some cases. Related errors: // error C5013: profile does not support "for" statements and "for" could not // be unrolled //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES // Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. // Using one static loop avoids overhead if the user is right, but if the user // is wrong (loops are allowed), breaking a loop into if-blocked pieces with a // binary search can potentially save some iterations. However, it may fail: // error C6001: Temporary register limit of 32 exceeded; 35 registers // needed to compile program //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS // tex2Dlod: Requires an fp40 or newer profile. This can be used to disable // anisotropic filtering, thereby fixing related artifacts. Related errors: // error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in // this profile //#define DRIVERS_ALLOW_TEX2DLOD // tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate // artifacts from anisotropic filtering and mipmapping. Related errors: // error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported // in this profile //#define DRIVERS_ALLOW_TEX2DBIAS // Integrated graphics compatibility: Integrated graphics like Intel HD 4000 // impose stricter limitations on register counts and instructions. Enable // INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: // error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed // to compile program. // Enabling integrated graphics compatibility mode will automatically disable: // 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. // (This may be reenabled in a later release.) // 2.) RUNTIME_GEOMETRY_MODE // 3.) The high-quality 4x4 Gaussian resize for the bloom approximation //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE //////////////////////////// USER CODEPATH OPTIONS /////////////////////////// // To disable a #define option, turn its line into a comment with "//." // RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): // Enable runtime shader parameters in the Retroarch (etc.) GUI? They override // many of the options in this file and allow real-time tuning, but many of // them are slower. Disabling them and using this text file will boost FPS. #define RUNTIME_SHADER_PARAMS_ENABLE // Specify the phosphor bloom sigma at runtime? This option is 10% slower, but // it's the only way to do a wide-enough full bloom with a runtime dot pitch. #define RUNTIME_PHOSPHOR_BLOOM_SIGMA // Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) #define RUNTIME_ANTIALIAS_WEIGHTS // Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) //#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS // Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader // parameters? This will require more math or dynamic branching. #define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE // Specify the tilt at runtime? This makes things about 3% slower. #define RUNTIME_GEOMETRY_TILT // Specify the geometry mode at runtime? #define RUNTIME_GEOMETRY_MODE // Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and // mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without // dynamic branches? This is cheap if mask_resize_viewport_scale is small. #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT // PHOSPHOR MASK: // Manually resize the phosphor mask for best results (slower)? Disabling this // removes the option to do so, but it may be faster without dynamic branches. #define PHOSPHOR_MASK_MANUALLY_RESIZE // If we sinc-resize the mask, should we Lanczos-window it (slower but better)? #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW // Larger blurs are expensive, but we need them to blur larger triads. We can // detect the right blur if the triad size is static or our profile allows // dynamic branches, but otherwise we use the largest blur the user indicates // they might need: #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // Here's a helpful chart: // MaxTriadSize BlurSize MinTriadCountsByResolution // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect /////////////////////////////// USER PARAMETERS ////////////////////////////// // Note: Many of these static parameters are overridden by runtime shader // parameters when those are enabled. However, many others are static codepath // options that were cleaner or more convert to code as static constants. // GAMMA: static const float crt_gamma_static = 2.5; // range [1, 5] static const float lcd_gamma_static = 2.2; // range [1, 5] // LEVELS MANAGEMENT: // Control the final multiplicative image contrast: static const float levels_contrast_static = 1.0; // range [0, 4) // We auto-dim to avoid clipping between passes and restore brightness // later. Control the dim factor here: Lower values clip less but crush // blacks more (static only for now). static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 // HALATION/DIFFUSION/BLOOM: // Halation weight: How much energy should be lost to electrons bounding // around under the CRT glass and exciting random phosphors? static const float halation_weight_static = 0.0; // range [0, 1] // Refractive diffusion weight: How much light should spread/diffuse from // refracting through the CRT glass? static const float diffusion_weight_static = 0.075; // range [0, 1] // Underestimate brightness: Bright areas bloom more, but we can base the // bloom brightpass on a lower brightness to sharpen phosphors, or a higher // brightness to soften them. Low values clip, but >= 0.8 looks okay. static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] // Blur all colors more than necessary for a softer phosphor bloom? static const float bloom_excess_static = 0.0; // range [0, 1] // The BLOOM_APPROX pass approximates a phosphor blur early on with a small // blurred resize of the input (convergence offsets are applied as well). // There are three filter options (static option only for now): // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane // and beam_max_sigma is low. // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, // always uses a static sigma regardless of beam_max_sigma or // mask_num_triads_desired. // 2.) True 4x4 Gaussian resize: Slowest, technically correct. // These options are more pronounced for the fast, unbloomed shader version. #ifndef RADEON_FIX static const float bloom_approx_filter_static = 2.0; #else static const float bloom_approx_filter_static = 1.0; #endif // ELECTRON BEAM SCANLINE DISTRIBUTION: // How many scanlines should contribute light to each pixel? Using more // scanlines is slower (especially for a generalized Gaussian) but less // distorted with larger beam sigmas (especially for a pure Gaussian). The // max_beam_sigma at which the closest unused weight is guaranteed < // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized static const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). static const bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any // better than 3x antialiasing (static option only for now). static const float beam_antialias_level = 1.0; // range [0, 2] // Min/max standard deviations for scanline beams: Higher values widen and // soften scanlines. Depending on other options, low min sigmas can alias. static const float beam_min_sigma_static = 0.02; // range (0, 1] static const float beam_max_sigma_static = 0.3; // range (0, 1] // Beam width varies as a function of color: A power function (0) is more // configurable, but a spherical function (1) gives the widest beam // variability without aliasing (static option only for now). static const float beam_spot_shape_function = 0.0; // Spot shape power: Powers <= 1 give smoother spot shapes but lower // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] // Generalized Gaussian max shape parameters: Higher values give flatter // scanline plateaus and steeper dropoffs, simultaneously widening and // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and // values > ~40.0 cause artifacts with integrals. static const float beam_min_shape_static = 2.0; // range [2, 32] static const float beam_max_shape_static = 4.0; // range [2, 32] // Generalized Gaussian shape power: Affects how quickly the distribution // changes shape from Gaussian to steep/plateaued as color increases from 0 // to 1.0. Higher powers appear softer for most colors, and lower powers // appear sharper for most colors. static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] // What filter should be used to sample scanlines horizontally? // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) static const float beam_horiz_filter_static = 0.0; // Standard deviation for horizontal Gaussian resampling: static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] // Do horizontal scanline sampling in linear RGB (correct light mixing), // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- // limiting circuitry in some CRT's), or a weighted avg.? static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). static const bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] static const float2 convergence_offsets_r_static = float2(0.1, 0.2); static const float2 convergence_offsets_g_static = float2(0.3, 0.4); static const float2 convergence_offsets_b_static = float2(0.5, 0.6); // Detect interlacing (static option only for now)? static const bool interlace_detect = true; // Assume 1080-line sources are interlaced? static const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? // (Whether this matters depends on the nature of the interlaced input.) static const bool interlace_bff_static = false; // ANTIALIASING: // What AA level do you want for curvature/overscan/subpixels? Options: // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x // (Static option only for now) static const float aa_level = 12.0; // range [0, 24] // What antialiasing filter do you want (static option only)? Options: // 0: Box (separable), 1: Box (cylindrical), // 2: Tent (separable), 3: Tent (cylindrical), // 4: Gaussian (separable), 5: Gaussian (cylindrical), // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS static const float aa_filter = 6.0; // range [0, 9] // Flip the sample grid on odd/even frames (static option only for now)? static const bool aa_temporal = false; // Use RGB subpixel offsets for antialiasing? The pixel is at green, and // the blue offset is the negative r offset; range [0, 0.5] static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // 4.) C = 0.0 is a soft spline filter. static const float aa_cubic_c_static = 0.5; // range [0, 4] // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] // PHOSPHOR MASK: // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask static const float mask_type_static = 1.0; // range [0, 2] // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This // is halfway decent with LUT mipmapping but atrocious without it. // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. // This mode reuses the same masks, so triads will be enormous unless // you change the mask LUT filenames in your .cgp file. static const float mask_sample_mode_static = 0.0; // range [0, 2] // Prefer setting the triad size (0.0) or number on the screen (1.0)? // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size // will always be used to calculate the full bloom sigma statically. static const float mask_specify_num_triads_static = 0.0; // range [0, 1] // Specify the phosphor triad size, in pixels. Each tile (usually with 8 // triads) will be rounded to the nearest integer tile size and clamped to // obey minimum size constraints (imposed to reduce downsize taps) and // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). // To increase the size limit, double the viewport-relative scales for the // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. // range [1, mask_texture_small_size/mask_triads_per_tile] static const float mask_triad_size_desired_static = 24.0 / 8.0; // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the // final size will be rounded and constrained as above); default 480.0 static const float mask_num_triads_desired_static = 480.0; // How many lobes should the sinc/Lanczos resizer use? More lobes require // more samples and avoid moire a bit better, but some is unavoidable // depending on the destination size (static option for now). static const float mask_sinc_lobes = 3.0; // range [2, 4] // The mask is resized using a variable number of taps in each dimension, // but some Cg profiles always fetch a constant number of taps no matter // what (no dynamic branching). We can limit the maximum number of taps if // we statically limit the minimum phosphor triad size. Larger values are // faster, but the limit IS enforced (static option only, forever); // range [1, mask_texture_small_size/mask_triads_per_tile] // TODO: Make this 1.0 and compensate with smarter sampling! static const float mask_min_allowed_triad_size = 2.0; // GEOMETRY: // Geometry mode: // 0: Off (default), 1: Spherical mapping (like cgwg's), // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron static const float geom_mode_static = 0.0; // range [0, 3] // Radius of curvature: Measured in units of your viewport's diagonal size. static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] // View dist is the distance from the player to their physical screen, in // units of the viewport's diagonal size. It controls the field of view. static const float geom_view_dist_static = 2.0; // range [0.5, 1024] // Tilt angle in radians (clockwise around up and right vectors): static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] // Aspect ratio: When the true viewport size is unknown, this value is used // to help convert between the phosphor triad size and count, along with // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set // this equal to Retroarch's display aspect ratio (DAR) for best results; // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; // default (256/224)*(54/47) = 1.313069909 (see below) static const float geom_aspect_ratio_static = 1.313069909; // Before getting into overscan, here's some general aspect ratio info: // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping // Geometry processing has to "undo" the screen-space 2D DAR to calculate // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: // a.) Enable Retroarch's "Crop Overscan" // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) // Real consoles use horizontal black padding in the signal, but emulators // often crop this without cropping the vertical padding; a 256x224 [S]NES // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR // without doing a. or b., but horizontal image borders will be tighter // than vertical ones, messing up curvature and overscan. Fixing the // padding first corrects this. // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly // or adjust x/y independently to e.g. readd horizontal padding, as noted // above: Values < 1.0 zoom out; range (0, inf) static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) // Compute a proper pixel-space to texture-space matrix even without ddx()/ // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering // with strong curvature (static option only for now). static const bool geom_force_correct_tangent_matrix = true; // BORDERS: // Rounded border size in texture uv coords: static const float border_size_static = 0.015; // range [0, 0.5] // Border darkness: Moderate values darken the border smoothly, and high // values make the image very dark just inside the border: static const float border_darkness_static = 2.0; // range [0, inf) // Border compression: High numbers compress border transitions, narrowing // the dark border area. static const float border_compress_static = 2.5; // range [1, inf) #endif // USER_SETTINGS_H ///////////////////////////// END USER-SETTINGS //////////////////////////// //#include "user-cgp-constants.h" ///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// #ifndef USER_CGP_CONSTANTS_H #define USER_CGP_CONSTANTS_H // IMPORTANT: // These constants MUST be set appropriately for the settings in crt-royale.cgp // (or whatever related .cgp file you're using). If they aren't, you're likely // to get artifacts, the wrong phosphor mask size, etc. I wish these could be // set directly in the .cgp file to make things easier, but...they can't. // PASS SCALES AND RELATED CONSTANTS: // Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of // this shader: One does a viewport-scale bloom, and the other skips it. The // latter benefits from a higher bloom_approx_scale_x, so save both separately: static const float bloom_approx_size_x = 320.0; static const float bloom_approx_size_x_for_fake = 400.0; // Copy the viewport-relative scales of the phosphor mask resize passes // (MASK_RESIZE and the pass immediately preceding it): static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); // Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: static const float geom_max_aspect_ratio = 4.0/3.0; // PHOSPHOR MASK TEXTURE CONSTANTS: // Set the following constants to reflect the properties of the phosphor mask // texture named in crt-royale.cgp. The shader optionally resizes a mask tile // based on user settings, then repeats a single tile until filling the screen. // The shader must know the input texture size (default 64x64), and to manually // resize, it must also know the horizontal triads per tile (default 8). static const float2 mask_texture_small_size = float2(64.0, 64.0); static const float2 mask_texture_large_size = float2(512.0, 512.0); static const float mask_triads_per_tile = 8.0; // We need the average brightness of the phosphor mask to compensate for the // dimming it causes. The following four values are roughly correct for the // masks included with the shader. Update the value for any LUT texture you // change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether // the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). //#define PHOSPHOR_MASK_GRILLE14 static const float mask_grille14_avg_color = 50.6666666/255.0; // TileableLinearApertureGrille14Wide7d33Spacing*.png // TileableLinearApertureGrille14Wide10And6Spacing*.png static const float mask_grille15_avg_color = 53.0/255.0; // TileableLinearApertureGrille15Wide6d33Spacing*.png // TileableLinearApertureGrille15Wide8And5d5Spacing*.png static const float mask_slot_avg_color = 46.0/255.0; // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png static const float mask_shadow_avg_color = 41.0/255.0; // TileableLinearShadowMask*.png // TileableLinearShadowMaskEDP*.png #ifdef PHOSPHOR_MASK_GRILLE14 static const float mask_grille_avg_color = mask_grille14_avg_color; #else static const float mask_grille_avg_color = mask_grille15_avg_color; #endif #endif // USER_CGP_CONSTANTS_H ////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// /////////////////////////////// FIXED SETTINGS /////////////////////////////// // Avoid dividing by zero; using a macro overloads for float, float2, etc.: #define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 // Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. #ifndef SIMULATE_CRT_ON_LCD #define SIMULATE_CRT_ON_LCD #endif // Manually tiling a manually resized texture creates texture coord derivative // discontinuities and confuses anisotropic filtering, causing discolored tile // seams in the phosphor mask. Workarounds: // a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's // downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and // disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. // b.) "Tile flat twice" requires drawing two full tiles without border padding // to the resized mask FBO, and it's incompatible with same-pass curvature. // (Same-pass curvature isn't used but could be in the future...maybe.) // c.) "Fix discontinuities" requires derivatives and drawing one tile with // border padding to the resized mask FBO, but it works with same-pass // curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. // Precedence: a, then, b, then c (if multiple strategies are #defined). #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen // Also, manually resampling the phosphor mask is slightly blurrier with // anisotropic filtering. (Resampling with mipmapping is even worse: It // creates artifacts, but only with the fully bloomed shader.) The difference // is subtle with small triads, but you can fix it for a small cost. //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD ////////////////////////////// DERIVED SETTINGS ////////////////////////////// // Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the // geometry mode at runtime, or a 4x4 true Gaussian resize. Disable // incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be // #defined by either user-settings.h or a wrapper .cg that #includes the // current .cg pass.) #ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE #undef PHOSPHOR_MASK_MANUALLY_RESIZE #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is // inferior in most cases, so replace 2.0 with 0.0: static const float bloom_approx_filter = bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; #else static const float bloom_approx_filter = bloom_approx_filter_static; #endif // Disable slow runtime paths if static parameters are used. Most of these // won't be a problem anyway once the params are disabled, but some will. #ifndef RUNTIME_SHADER_PARAMS_ENABLE #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA #endif #ifdef RUNTIME_ANTIALIAS_WEIGHTS #undef RUNTIME_ANTIALIAS_WEIGHTS #endif #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS #endif #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #endif #ifdef RUNTIME_GEOMETRY_TILT #undef RUNTIME_GEOMETRY_TILT #endif #ifdef RUNTIME_GEOMETRY_MODE #undef RUNTIME_GEOMETRY_MODE #endif #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // Make tex2Dbias a backup for tex2Dlod for wider compatibility. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif // Rule out unavailable anisotropic compatibility strategies: #ifndef DRIVERS_ALLOW_DERIVATIVES #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #ifndef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #endif #ifdef ANTIALIAS_DISABLE_ANISOTROPIC #undef ANTIALIAS_DISABLE_ANISOTROPIC #endif #endif #ifndef DRIVERS_ALLOW_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif // Prioritize anisotropic tiling compatibility strategies by performance and // disable unused strategies. This concentrates all the nesting in one place. #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #endif #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #endif #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #else // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with // flat texture coords in the same pass, but that's all we use. #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES #endif #endif #endif #endif // The tex2Dlod and tex2Dbias strategies share a lot in common, and we can // reduce some #ifdef nesting in the next section by essentially OR'ing them: #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY #endif // Prioritize anisotropic resampling compatibility strategies the same way: #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS #endif #endif /////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// // If we can use the large mipmapped LUT without mipmapping artifacts, we // should: It gives us more options for using fewer samples. #ifdef DRIVERS_ALLOW_TEX2DLOD #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD // TODO: Take advantage of this! #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT static const float2 mask_resize_src_lut_size = mask_texture_large_size; #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif #else static const float2 mask_resize_src_lut_size = mask_texture_small_size; #endif // tex2D's sampler2D parameter MUST be a uniform global, a uniform input to // main_fragment, or a static alias of one of the above. This makes it hard // to select the phosphor mask at runtime: We can't even assign to a uniform // global in the vertex shader or select a sampler2D in the vertex shader and // pass it to the fragment shader (even with explicit TEXUNIT# bindings), // because it just gives us the input texture or a black screen. However, we // can get around these limitations by calling tex2D three times with different // uniform samplers (or resizing the phosphor mask three times altogether). // With dynamic branches, we can process only one of these branches on top of // quickly discarding fragments we don't need (cgc seems able to overcome // limigations around dependent texture fetches inside of branches). Without // dynamic branches, we have to process every branch for every fragment...which // is slower. Runtime sampling mode selection is slower without dynamic // branches as well. Let the user's static #defines decide if it's worth it. #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #else #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT #endif #endif // We need to render some minimum number of tiles in the resize passes. // We need at least 1.0 just to repeat a single tile, and we need extra // padding beyond that for anisotropic filtering, discontinuitity fixing, // antialiasing, same-pass curvature (not currently used), etc. First // determine how many border texels and tiles we need, based on how the result // will be sampled: #ifdef GEOMETRY_EARLY static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; // Most antialiasing filters have a base radius of 4.0 pixels: static const float max_aa_base_pixel_border = 4.0 + max_subpixel_offset; #else static const float max_aa_base_pixel_border = 0.0; #endif // Anisotropic filtering adds about 0.5 to the pixel border: #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; #else static const float max_aniso_pixel_border = max_aa_base_pixel_border; #endif // Fixing discontinuities adds 1.0 more to the pixel border: #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; #else static const float max_tiled_pixel_border = max_aniso_pixel_border; #endif // Convert the pixel border to an integer texel border. Assume same-pass // curvature about triples the texel frequency: #ifdef GEOMETRY_EARLY static const float max_mask_texel_border = ceil(max_tiled_pixel_border * 3.0); #else static const float max_mask_texel_border = ceil(max_tiled_pixel_border); #endif // Convert the texel border to a tile border using worst-case assumptions: static const float max_mask_tile_border = max_mask_texel_border/ (mask_min_allowed_triad_size * mask_triads_per_tile); // Finally, set the number of resized tiles to render to MASK_RESIZE, and set // the starting texel (inside borders) for sampling it. #ifndef GEOMETRY_EARLY #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // Special case: Render two tiles without borders. Anisotropic // filtering doesn't seem to be a problem here. static const float mask_resize_num_tiles = 1.0 + 1.0; static const float mask_start_texels = 0.0; #else static const float mask_resize_num_tiles = 1.0 + 2.0 * max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif #else static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; static const float mask_start_texels = max_mask_texel_border; #endif // We have to fit mask_resize_num_tiles into an FBO with a viewport scale of // mask_resize_viewport_scale. This limits the maximum final triad size. // Estimate the minimum number of triads we can split the screen into in each // dimension (we'll be as correct as mask_resize_viewport_scale is): static const float mask_resize_num_triads = mask_resize_num_tiles * mask_triads_per_tile; static const float2 min_allowed_viewport_triads = float2(mask_resize_num_triads) / mask_resize_viewport_scale; //////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// static const float pi = 3.141592653589; // We often want to find the location of the previous texel, e.g.: // const float2 curr_texel = uv * texture_size; // const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); // const float2 prev_texel_uv = prev_texel / texture_size; // However, many GPU drivers round incorrectly around exact texel locations. // We need to subtract a little less than 0.5 before flooring, and some GPU's // require this value to be farther from 0.5 than others; define it here. // const float2 prev_texel = // floor(curr_texel - float2(under_half)) + float2(0.5); static const float under_half = 0.4995; #endif // DERIVED_SETTINGS_AND_CONSTANTS_H ///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS //////////////////////////// //#include "../../../../include/blur-functions.h" //////////////////////////// BEGIN BLUR-FUNCTIONS /////////////////////////// #ifndef BLUR_FUNCTIONS_H #define BLUR_FUNCTIONS_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file provides reusable one-pass and separable (two-pass) blurs. // Requires: All blurs share these requirements (dxdy requirement is split): // 1.) All requirements of gamma-management.h must be satisfied! // 2.) filter_linearN must == "true" in your .cgp preset unless // you're using tex2DblurNresize at 1x scale. // 3.) mipmap_inputN must == "true" in your .cgp preset if // output_size < video_size. // 4.) output_size == video_size / pow(2, M), where M is some // positive integer. tex2Dblur*resize can resize arbitrarily // (and the blur will be done after resizing), but arbitrary // resizes "fail" with other blurs due to the way they mix // static weights with bilinear sample exploitation. // 5.) In general, dxdy should contain the uv pixel spacing: // dxdy = (video_size/output_size)/texture_size // 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast), // zero out the dxdy component in the unblurred dimension: // dxdy = float2(dxdy.x, 0.0) or float2(0.0, dxdy.y) // Many blurs share these requirements: // 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0, // or they will blur more in the lower-scaled dimension. // 2.) One-pass shared sample blurs require ddx(), ddy(), and // tex2Dlod() to be supported by the current Cg profile, and // the drivers must support high-quality derivatives. // 3.) One-pass shared sample blurs require: // tex_uv.w == log2(video_size/output_size).y; // Non-wrapper blurs share this requirement: // 1.) sigma is the intended standard deviation of the blur // Wrapper blurs share this requirement, which is automatically // met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below): // 1.) blurN_std_dev must be global static const float values // specifying standard deviations for Nx blurs in units // of destination pixels // Optional: 1.) The including file (or an earlier included file) may // optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace // default standard deviations with those matching a binomial // distribution. (See below for details/properties.) // 2.) The including file (or an earlier included file) may // optionally #define OVERRIDE_BLUR_STD_DEVS and override: // static const float blur3_std_dev // static const float blur4_std_dev // static const float blur5_std_dev // static const float blur6_std_dev // static const float blur7_std_dev // static const float blur8_std_dev // static const float blur9_std_dev // static const float blur10_std_dev // static const float blur11_std_dev // static const float blur12_std_dev // static const float blur17_std_dev // static const float blur25_std_dev // static const float blur31_std_dev // static const float blur43_std_dev // 3.) The including file (or an earlier included file) may // optionally #define OVERRIDE_ERROR_BLURRING and override: // static const float error_blurring // This tuning value helps mitigate weighting errors from one- // pass shared-sample blurs sharing bilinear samples between // fragments. Values closer to 0.0 have "correct" blurriness // but allow more artifacts, and values closer to 1.0 blur away // artifacts by sampling closer to halfway between texels. // UPDATE 6/21/14: The above static constants may now be overridden // by non-static uniform constants. This permits exposing blur // standard deviations as runtime GUI shader parameters. However, // using them keeps weights from being statically computed, and the // speed hit depends on the blur: On my machine, uniforms kill over // 53% of the framerate with tex2Dblur12x12shared, but they only // drop the framerate by about 18% with tex2Dblur11fast. // Quality and Performance Comparisons: // For the purposes of the following discussion, "no sRGB" means // GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't. // 1.) tex2DblurNfast is always faster than tex2DblurNresize. // 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize // well, because they're the only ones that don't exploit bilinear samples. // This also means they're the only functions which can be truly gamma- // correct without linear (or sRGB FBO) input, but only at 1x scale. // 3.) One-pass shared sample blurs only have a speed advantage without sRGB. // They also have some inaccuracies due to their shared-[bilinear-]sample // design, which grow increasingly bothersome for smaller blurs and higher- // frequency source images (relative to their resolution). I had high // hopes for them, but their most realistic use case is limited to quickly // reblurring an already blurred input at full resolution. Otherwise: // a.) If you're blurring a low-resolution source, you want a better blur. // b.) If you're blurring a lower mipmap, you want a better blur. // c.) If you're blurring a high-resolution, high-frequency source, you // want a better blur. // 4.) The one-pass blurs without shared samples grow slower for larger blurs, // but they're competitive with separable blurs at 5x5 and smaller, and // even tex2Dblur7x7 isn't bad if you're wanting to conserve passes. // Here are some framerates from a GeForce 8800GTS. The first pass resizes to // viewport size (4x in this test) and linearizes for sRGB codepaths, and the // remaining passes perform 6 full blurs. Mipmapped tests are performed at the // same scale, so they just measure the cost of mipmapping each FBO (only every // other FBO is mipmapped for separable blurs, to mimic realistic usage). // Mipmap Neither sRGB+Mipmap sRGB Function // 76.0 92.3 131.3 193.7 tex2Dblur3fast // 63.2 74.4 122.4 175.5 tex2Dblur3resize // 93.7 121.2 159.3 263.2 tex2Dblur3x3 // 59.7 68.7 115.4 162.1 tex2Dblur3x3resize // 63.2 74.4 122.4 175.5 tex2Dblur5fast // 49.3 54.8 100.0 132.7 tex2Dblur5resize // 59.7 68.7 115.4 162.1 tex2Dblur5x5 // 64.9 77.2 99.1 137.2 tex2Dblur6x6shared // 55.8 63.7 110.4 151.8 tex2Dblur7fast // 39.8 43.9 83.9 105.8 tex2Dblur7resize // 40.0 44.2 83.2 104.9 tex2Dblur7x7 // 56.4 65.5 71.9 87.9 tex2Dblur8x8shared // 49.3 55.1 99.9 132.5 tex2Dblur9fast // 33.3 36.2 72.4 88.0 tex2Dblur9resize // 27.8 29.7 61.3 72.2 tex2Dblur9x9 // 37.2 41.1 52.6 60.2 tex2Dblur10x10shared // 44.4 49.5 91.3 117.8 tex2Dblur11fast // 28.8 30.8 63.6 75.4 tex2Dblur11resize // 33.6 36.5 40.9 45.5 tex2Dblur12x12shared // TODO: Fill in benchmarks for new untested blurs. // tex2Dblur17fast // tex2Dblur25fast // tex2Dblur31fast // tex2Dblur43fast // tex2Dblur3x3resize ///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// // Set static standard deviations, but allow users to override them with their // own constants (even non-static uniforms if they're okay with the speed hit): #ifndef OVERRIDE_BLUR_STD_DEVS // blurN_std_dev values are specified in terms of dxdy strides. #ifdef USE_BINOMIAL_BLUR_STD_DEVS // By request, we can define standard deviations corresponding to a // binomial distribution with p = 0.5 (related to Pascal's triangle). // This distribution works such that blurring multiple times should // have the same result as a single larger blur. These values are // larger than default for blurs up to 6x and smaller thereafter. static const float blur3_std_dev = 0.84931640625; static const float blur4_std_dev = 0.84931640625; static const float blur5_std_dev = 1.0595703125; static const float blur6_std_dev = 1.06591796875; static const float blur7_std_dev = 1.17041015625; static const float blur8_std_dev = 1.1720703125; static const float blur9_std_dev = 1.2259765625; static const float blur10_std_dev = 1.21982421875; static const float blur11_std_dev = 1.25361328125; static const float blur12_std_dev = 1.2423828125; static const float blur17_std_dev = 1.27783203125; static const float blur25_std_dev = 1.2810546875; static const float blur31_std_dev = 1.28125; static const float blur43_std_dev = 1.28125; #else // The defaults are the largest values that keep the largest unused // blur term on each side <= 1.0/256.0. (We could get away with more // or be more conservative, but this compromise is pretty reasonable.) static const float blur3_std_dev = 0.62666015625; static const float blur4_std_dev = 0.66171875; static const float blur5_std_dev = 0.9845703125; static const float blur6_std_dev = 1.02626953125; static const float blur7_std_dev = 1.36103515625; static const float blur8_std_dev = 1.4080078125; static const float blur9_std_dev = 1.7533203125; static const float blur10_std_dev = 1.80478515625; static const float blur11_std_dev = 2.15986328125; static const float blur12_std_dev = 2.215234375; static const float blur17_std_dev = 3.45535583496; static const float blur25_std_dev = 5.3409576416; static const float blur31_std_dev = 6.86488037109; static const float blur43_std_dev = 10.1852050781; #endif // USE_BINOMIAL_BLUR_STD_DEVS #endif // OVERRIDE_BLUR_STD_DEVS #ifndef OVERRIDE_ERROR_BLURRING // error_blurring should be in [0.0, 1.0]. Higher values reduce ringing // in shared-sample blurs but increase blurring and feature shifting. static const float error_blurring = 0.5; #endif ////////////////////////////////// INCLUDES ////////////////////////////////// // gamma-management.h relies on pass-specific settings to guide its behavior: // FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details. //#include "gamma-management.h" //////////////////////////// BEGIN GAMMA-MANAGEMENT ////////////////////////// #ifndef GAMMA_MANAGEMENT_H #define GAMMA_MANAGEMENT_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file provides gamma-aware tex*D*() and encode_output() functions. // Requires: Before #include-ing this file, the including file must #define // the following macros when applicable and follow their rules: // 1.) #define FIRST_PASS if this is the first pass. // 2.) #define LAST_PASS if this is the last pass. // 3.) If sRGB is available, set srgb_framebufferN = "true" for // every pass except the last in your .cgp preset. // 4.) If sRGB isn't available but you want gamma-correctness with // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass. // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7) // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7) // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7) // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -) // If an option in [5, 8] is #defined in the first or last pass, it // should be #defined for both. It shouldn't make a difference // whether it's #defined for intermediate passes or not. // Optional: The including file (or an earlier included file) may optionally // #define a number of macros indicating it will override certain // macros and associated constants are as follows: // static constants with either static or uniform constants. The // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define: // static const float ntsc_gamma // static const float pal_gamma // static const float crt_reference_gamma_high // static const float crt_reference_gamma_low // static const float lcd_reference_gamma // static const float crt_office_gamma // static const float lcd_office_gamma // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define: // static const float crt_gamma // static const float gba_gamma // static const float lcd_gamma // 3.) OVERRIDE_FINAL_GAMMA: The user must first define: // static const float input_gamma // static const float intermediate_gamma // static const float output_gamma // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.) // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define: // static const bool assume_opaque_alpha // The gamma constant overrides must be used in every pass or none, // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros. // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis. // Usage: After setting macros appropriately, ignore gamma correction and // replace all tex*D*() calls with equivalent gamma-aware // tex*D*_linearize calls, except: // 1.) When you read an LUT, use regular tex*D or a gamma-specified // function, depending on its gamma encoding: // tex*D*_linearize_gamma (takes a runtime gamma parameter) // 2.) If you must read pass0's original input in a later pass, use // tex2D_linearize_ntsc_gamma. If you want to read pass0's // input with gamma-corrected bilinear filtering, consider // creating a first linearizing pass and reading from the input // of pass1 later. // Then, return encode_output(color) from every fragment shader. // Finally, use the global gamma_aware_bilinear boolean if you want // to statically branch based on whether bilinear filtering is // gamma-correct or not (e.g. for placing Gaussian blur samples). // // Detailed Policy: // tex*D*_linearize() functions enforce a consistent gamma-management policy // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume // their input texture has the same encoding characteristics as the input for // the current pass (which doesn't apply to the exceptions listed above). // Similarly, encode_output() enforces a policy based on the LAST_PASS and // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the // following two pipelines. // Typical pipeline with intermediate sRGB framebuffers: // linear_color = pow(pass0_encoded_color, input_gamma); // intermediate_output = linear_color; // Automatic sRGB encoding // linear_color = intermediate_output; // Automatic sRGB decoding // final_output = pow(intermediate_output, 1.0/output_gamma); // Typical pipeline without intermediate sRGB framebuffers: // linear_color = pow(pass0_encoded_color, input_gamma); // intermediate_output = pow(linear_color, 1.0/intermediate_gamma); // linear_color = pow(intermediate_output, intermediate_gamma); // final_output = pow(intermediate_output, 1.0/output_gamma); // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to // easily get gamma-correctness without banding on devices where sRGB isn't // supported. // // Use This Header to Maximize Code Reuse: // The purpose of this header is to provide a consistent interface for texture // reads and output gamma-encoding that localizes and abstracts away all the // annoying details. This greatly reduces the amount of code in each shader // pass that depends on the pass number in the .cgp preset or whether sRGB // FBO's are being used: You can trivially change the gamma behavior of your // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same // code in your first, Nth, and last passes, you can even put it all in another // header file and #include it from skeleton .cg files that #define the // appropriate pass-specific settings. // // Rationale for Using Three Macros: // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes // a lower maintenance burden on each pass. At first glance it seems we could // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT. // This works for simple use cases where input_gamma == output_gamma, but it // breaks down for more complex scenarios like CRT simulation, where the pass // number determines the gamma encoding of the input and output. /////////////////////////////// BASE CONSTANTS /////////////////////////////// // Set standard gamma constants, but allow users to override them: #ifndef OVERRIDE_STANDARD_GAMMA // Standard encoding gammas: static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? static const float pal_gamma = 2.8; // Never actually 2.8 in practice // Typical device decoding gammas (only use for emulating devices): // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard // gammas: The standards purposely undercorrected for an analog CRT's // assumed 2.5 reference display gamma to maintain contrast in assumed // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf // These unstated assumptions about display gamma and perceptual rendering // intent caused a lot of confusion, and more modern CRT's seemed to target // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit // (they struggle near black with 2.5 gamma anyway), especially PC/laptop // displays designed to view sRGB in bright environments. (Standards are // also in flux again with BT.1886, but it's underspecified for displays.) static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) static const float lcd_reference_gamma = 2.5; // To match CRT static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC static const float lcd_office_gamma = 2.2; // Approximates sRGB #endif // OVERRIDE_STANDARD_GAMMA // Assuming alpha == 1.0 might make it easier for users to avoid some bugs, // but only if they're aware of it. #ifndef OVERRIDE_ALPHA_ASSUMPTIONS static const bool assume_opaque_alpha = false; #endif /////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// // gamma-management.h should be compatible with overriding gamma values with // runtime user parameters, but we can only define other global constants in // terms of static constants, not uniform user parameters. To get around this // limitation, we need to define derived constants using functions. // Set device gamma constants, but allow users to override them: #ifdef OVERRIDE_DEVICE_GAMMA // The user promises to globally define the appropriate constants: inline float get_crt_gamma() { return crt_gamma; } inline float get_gba_gamma() { return gba_gamma; } inline float get_lcd_gamma() { return lcd_gamma; } #else inline float get_crt_gamma() { return crt_reference_gamma_high; } inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) inline float get_lcd_gamma() { return lcd_office_gamma; } #endif // OVERRIDE_DEVICE_GAMMA // Set decoding/encoding gammas for the first/lass passes, but allow overrides: #ifdef OVERRIDE_FINAL_GAMMA // The user promises to globally define the appropriate constants: inline float get_intermediate_gamma() { return intermediate_gamma; } inline float get_input_gamma() { return input_gamma; } inline float get_output_gamma() { return output_gamma; } #else // If we gamma-correct every pass, always use ntsc_gamma between passes to // ensure middle passes don't need to care if anything is being simulated: inline float get_intermediate_gamma() { return ntsc_gamma; } #ifdef SIMULATE_CRT_ON_LCD inline float get_input_gamma() { return get_crt_gamma(); } inline float get_output_gamma() { return get_lcd_gamma(); } #else #ifdef SIMULATE_GBA_ON_LCD inline float get_input_gamma() { return get_gba_gamma(); } inline float get_output_gamma() { return get_lcd_gamma(); } #else #ifdef SIMULATE_LCD_ON_CRT inline float get_input_gamma() { return get_lcd_gamma(); } inline float get_output_gamma() { return get_crt_gamma(); } #else #ifdef SIMULATE_GBA_ON_CRT inline float get_input_gamma() { return get_gba_gamma(); } inline float get_output_gamma() { return get_crt_gamma(); } #else // Don't simulate anything: inline float get_input_gamma() { return ntsc_gamma; } inline float get_output_gamma() { return ntsc_gamma; } #endif // SIMULATE_GBA_ON_CRT #endif // SIMULATE_LCD_ON_CRT #endif // SIMULATE_GBA_ON_LCD #endif // SIMULATE_CRT_ON_LCD #endif // OVERRIDE_FINAL_GAMMA // Set decoding/encoding gammas for the current pass. Use static constants for // linearize_input and gamma_encode_output, because they aren't derived, and // they let the compiler do dead-code elimination. #ifndef GAMMA_ENCODE_EVERY_FBO #ifdef FIRST_PASS static const bool linearize_input = true; inline float get_pass_input_gamma() { return get_input_gamma(); } #else static const bool linearize_input = false; inline float get_pass_input_gamma() { return 1.0; } #endif #ifdef LAST_PASS static const bool gamma_encode_output = true; inline float get_pass_output_gamma() { return get_output_gamma(); } #else static const bool gamma_encode_output = false; inline float get_pass_output_gamma() { return 1.0; } #endif #else static const bool linearize_input = true; static const bool gamma_encode_output = true; #ifdef FIRST_PASS inline float get_pass_input_gamma() { return get_input_gamma(); } #else inline float get_pass_input_gamma() { return get_intermediate_gamma(); } #endif #ifdef LAST_PASS inline float get_pass_output_gamma() { return get_output_gamma(); } #else inline float get_pass_output_gamma() { return get_intermediate_gamma(); } #endif #endif // Users might want to know if bilinear filtering will be gamma-correct: static const bool gamma_aware_bilinear = !linearize_input; ////////////////////// COLOR ENCODING/DECODING FUNCTIONS ///////////////////// inline float4 encode_output(const float4 color) { if(gamma_encode_output) { if(assume_opaque_alpha) { return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0); } else { return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a); } } else { return color; } } inline float4 decode_input(const float4 color) { if(linearize_input) { if(assume_opaque_alpha) { return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0); } else { return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a); } } else { return color; } } inline float4 decode_gamma_input(const float4 color, const float3 gamma) { if(assume_opaque_alpha) { return float4(pow(color.rgb, gamma), 1.0); } else { return float4(pow(color.rgb, gamma), color.a); } } //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯ //#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D))) // EDIT: it's the 'const' in front of the coords that's doing it /////////////////////////// TEXTURE LOOKUP WRAPPERS ////////////////////////// // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: // Provide a wide array of linearizing texture lookup wrapper functions. The // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D // lookups are provided for completeness in case that changes someday. Nobody // is likely to use the *fetch and *proj functions, but they're included just // in case. The only tex*D texture sampling functions omitted are: // - tex*Dcmpbias // - tex*Dcmplod // - tex*DARRAY* // - tex*DMS* // - Variants returning integers // Standard line length restrictions are ignored below for vertical brevity. /* // tex1D: inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords) { return decode_input(tex1D(tex, tex_coords)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords) { return decode_input(tex1D(tex, tex_coords)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off) { return decode_input(tex1D(tex, tex_coords, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) { return decode_input(tex1D(tex, tex_coords, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy) { return decode_input(tex1D(tex, tex_coords, dx, dy)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy) { return decode_input(tex1D(tex, tex_coords, dx, dy)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off) { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off) { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } // tex1Dbias: inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords) { return decode_input(tex1Dbias(tex, tex_coords)); } inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); } // tex1Dfetch: inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords) { return decode_input(tex1Dfetch(tex, tex_coords)); } inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off) { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); } // tex1Dlod: inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords) { return decode_input(tex1Dlod(tex, tex_coords)); } inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); } // tex1Dproj: inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords) { return decode_input(tex1Dproj(tex, tex_coords)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords) { return decode_input(tex1Dproj(tex, tex_coords)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } */ // tex2D: inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords) { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); } inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords) { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); } inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords, texel_off)); } inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } // tex2Dbias: //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords) //{ return decode_input(tex2Dbias(tex, tex_coords)); } //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); } // tex2Dfetch: //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords) //{ return decode_input(tex2Dfetch(tex, tex_coords)); } //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off) //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); } // tex2Dlod: inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords) { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); } inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } /* // tex2Dproj: inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords) { return decode_input(tex2Dproj(tex, tex_coords)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords) { return decode_input(tex2Dproj(tex, tex_coords)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } */ /* // tex3D: inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords) { return decode_input(tex3D(tex, tex_coords)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex3D(tex, tex_coords, texel_off)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy) { return decode_input(tex3D(tex, tex_coords, dx, dy)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off) { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); } // tex3Dbias: inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dbias(tex, tex_coords)); } inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); } // tex3Dfetch: inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords) { return decode_input(tex3Dfetch(tex, tex_coords)); } inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off) { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); } // tex3Dlod: inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dlod(tex, tex_coords)); } inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); } // tex3Dproj: inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dproj(tex, tex_coords)); } inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); } /////////* // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: // This narrow selection of nonstandard tex2D* functions can be useful: // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0. //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords) //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); } //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off) //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); } // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS: // Provide a narrower selection of tex2D* wrapper functions that decode an // input sample with a specified gamma value. These are useful for reading // LUT's and for reading the input of pass0 in a later pass. // tex2D: inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma) { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); } inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma) { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } /* // tex2Dbias: inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma) { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); } inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma) { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); } // tex2Dfetch: inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma) { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); } inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma) { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); } */ // tex2Dlod: inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma) { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); } inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma) { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); } #endif // GAMMA_MANAGEMENT_H //////////////////////////// END GAMMA-MANAGEMENT ////////////////////////// //#include "quad-pixel-communication.h" /////////////////////// BEGIN QUAD-PIXEL-COMMUNICATION ////////////////////// #ifndef QUAD_PIXEL_COMMUNICATION_H #define QUAD_PIXEL_COMMUNICATION_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey* // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DISCLAIMER ///////////////////////////////// // *This code was inspired by "Shader Amortization using Pixel Quad Message // Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent // is not to plagiarize his fundamentally similar code and assert my own // copyright, but the algorithmic helper functions require so little code that // implementations can't vary by much except bugfixes and conventions. I just // wanted to license my own particular code here to avoid ambiguity and make it // clear that as far as I'm concerned, people can do as they please with it. ///////////////////////////////// DESCRIPTION //////////////////////////////// // Given screen pixel numbers, derive a "quad vector" describing a fragment's // position in its 2x2 pixel quad. Given that vector, obtain the values of any // variable at neighboring fragments. // Requires: Using this file in general requires: // 1.) ddx() and ddy() are present in the current Cg profile. // 2.) The GPU driver is using fine/high-quality derivatives. // Functions will give incorrect results if this is not true, // so a test function is included. ///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES //////////////////// float4 get_quad_vector_naive(float4 output_pixel_num_wrt_uvxy) { // Requires: Two measures of the current fragment's output pixel number // in the range ([0, output_size.x), [0, output_size.y)): // 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords. // 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy. // Returns: Two measures of the fragment's position in its 2x2 quad: // 1.) The .xy components are its 2x2 placement with respect to // uv direction (the origin (0, 0) is at the top-left): // top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0) // bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0) // You need this to arrange/weight shared texture samples. // 2.) The .zw components are its 2x2 placement with respect to // screen xy direction (position); the origin varies. // quad_gather needs this measure to work correctly. // Note: quad_vector.zw = quad_vector.xy * float2( // ddx(output_pixel_num_wrt_uvxy.x), // ddy(output_pixel_num_wrt_uvxy.y)); // Caveats: This function assumes the GPU driver always starts 2x2 pixel // quads at even pixel numbers. This assumption can be wrong // for odd output resolutions (nondeterministically so). float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0; float4 quad_vector = pixel_odd * 2.0 - float4(1.0); return quad_vector; } float4 get_quad_vector(float4 output_pixel_num_wrt_uvxy) { // Requires: Same as get_quad_vector_naive() (see that first). // Returns: Same as get_quad_vector_naive() (see that first), but it's // correct even if the 2x2 pixel quad starts at an odd pixel, // which can occur at odd resolutions. float4 quad_vector_guess = get_quad_vector_naive(output_pixel_num_wrt_uvxy); // If quad_vector_guess.zw doesn't increase with screen xy, we know // the 2x2 pixel quad starts at an odd pixel: float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z), ddy(quad_vector_guess.w)); return quad_vector_guess * odd_start_mirror.xyxy; } float4 get_quad_vector(float2 output_pixel_num_wrt_uv) { // Requires: 1.) ddx() and ddy() are present in the current Cg profile. // 2.) output_pixel_num_wrt_uv must increase with uv coords and // measure the current fragment's output pixel number in: // ([0, output_size.x), [0, output_size.y)) // Returns: Same as get_quad_vector_naive() (see that first), but it's // correct even if the 2x2 pixel quad starts at an odd pixel, // which can occur at odd resolutions. // Caveats: This function requires less information than the version // taking a float4, but it's potentially slower. // Do screen coords increase with or against uv? Get the direction // with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}. float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x), ddy(output_pixel_num_wrt_uv.y)); float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0; float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - float2(0.5)) * 2.0; float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror; // If quad_vector_screen_guess doesn't increase with screen xy, we know // the 2x2 pixel quad starts at an odd pixel: float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x), ddy(quad_vector_screen_guess.y)); float4 quad_vector_guess = float4( quad_vector_uv_guess, quad_vector_screen_guess); return quad_vector_guess * odd_start_mirror.xyxy; } void quad_gather(float4 quad_vector, float4 curr, out float4 adjx, out float4 adjy, out float4 diag) { // Requires: 1.) ddx() and ddy() are present in the current Cg profile. // 2.) The GPU driver is using fine/high-quality derivatives. // 3.) quad_vector describes the current fragment's location in // its 2x2 pixel quad using get_quad_vector()'s conventions. // 4.) curr is any vector you wish to get neighboring values of. // Returns: Values of an input vector (curr) at neighboring fragments // adjacent x, adjacent y, and diagonal (via out parameters). adjx = curr - ddx(curr) * quad_vector.z; adjy = curr - ddy(curr) * quad_vector.w; diag = adjx - ddy(adjx) * quad_vector.w; } void quad_gather(float4 quad_vector, float3 curr, out float3 adjx, out float3 adjy, out float3 diag) { // Float3 version adjx = curr - ddx(curr) * quad_vector.z; adjy = curr - ddy(curr) * quad_vector.w; diag = adjx - ddy(adjx) * quad_vector.w; } void quad_gather(float4 quad_vector, float2 curr, out float2 adjx, out float2 adjy, out float2 diag) { // Float2 version adjx = curr - ddx(curr) * quad_vector.z; adjy = curr - ddy(curr) * quad_vector.w; diag = adjx - ddy(adjx) * quad_vector.w; } float4 quad_gather(float4 quad_vector, float curr) { // Float version: // Returns: return.x == current // return.y == adjacent x // return.z == adjacent y // return.w == diagonal float4 all = float4(curr); all.y = all.x - ddx(all.x) * quad_vector.z; all.zw = all.xy - ddy(all.xy) * quad_vector.w; return all; } float4 quad_gather_sum(float4 quad_vector, float4 curr) { // Requires: Same as quad_gather() // Returns: Sum of an input vector (curr) at all fragments in a quad. float4 adjx, adjy, diag; quad_gather(quad_vector, curr, adjx, adjy, diag); return (curr + adjx + adjy + diag); } float3 quad_gather_sum(float4 quad_vector, float3 curr) { // Float3 version: float3 adjx, adjy, diag; quad_gather(quad_vector, curr, adjx, adjy, diag); return (curr + adjx + adjy + diag); } float2 quad_gather_sum(float4 quad_vector, float2 curr) { // Float2 version: float2 adjx, adjy, diag; quad_gather(quad_vector, curr, adjx, adjy, diag); return (curr + adjx + adjy + diag); } float quad_gather_sum(float4 quad_vector, float curr) { // Float version: float4 all_values = quad_gather(quad_vector, curr); return (all_values.x + all_values.y + all_values.z + all_values.w); } bool fine_derivatives_working(float4 quad_vector, float4 curr) { // Requires: 1.) ddx() and ddy() are present in the current Cg profile. // 2.) quad_vector describes the current fragment's location in // its 2x2 pixel quad using get_quad_vector()'s conventions. // 3.) curr must be a test vector with non-constant derivatives // (its value should change nonlinearly across fragments). // Returns: true if fine/hybrid/high-quality derivatives are used, or // false if coarse derivatives are used or inconclusive // Usage: Test whether quad-pixel communication is working! // Method: We can confirm fine derivatives are used if the following // holds (ever, for any value at any fragment): // (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy)) // The more values we test (e.g. test a float4 two ways), the // easier it is to demonstrate fine derivatives are working. // TODO: Check for floating point exact comparison issues! float4 ddx_curr = ddx(curr); float4 ddy_curr = ddy(curr); float4 adjx = curr - ddx_curr * quad_vector.z; float4 adjy = curr - ddy_curr * quad_vector.w; bool ddy_different = any(bool4(ddy_curr.x != ddy(adjx).x, ddy_curr.y != ddy(adjx).y, ddy_curr.z != ddy(adjx).z, ddy_curr.w != ddy(adjx).w)); bool ddx_different = any(bool4(ddx_curr.x != ddx(adjy).x, ddx_curr.y != ddx(adjy).y, ddx_curr.z != ddx(adjy).z, ddx_curr.w != ddx(adjy).w)); return any(bool2(ddy_different, ddx_different)); } bool fine_derivatives_working_fast(float4 quad_vector, float curr) { // Requires: Same as fine_derivatives_working() // Returns: Same as fine_derivatives_working() // Usage: This is faster than fine_derivatives_working() but more // likely to return false negatives, so it's less useful for // offline testing/debugging. It's also useless as the basis // for dynamic runtime branching as of May 2014: Derivatives // (and quad-pixel communication) are currently disallowed in // branches. However, future GPU's may allow you to use them // in dynamic branches if you promise the branch condition // evaluates the same for every fragment in the quad (and/or if // the driver enforces that promise by making a single fragment // control branch decisions). If that ever happens, this // version may become a more economical choice. float ddx_curr = ddx(curr); float ddy_curr = ddy(curr); float adjx = curr - ddx_curr * quad_vector.z; return (ddy_curr != ddy(adjx)); } #endif // QUAD_PIXEL_COMMUNICATION_H //////////////////////// END QUAD-PIXEL-COMMUNICATION /////////////////////// //#include "special-functions.h" /////////////////////////// BEGIN SPECIAL-FUNCTIONS ////////////////////////// #ifndef SPECIAL_FUNCTIONS_H #define SPECIAL_FUNCTIONS_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file implements the following mathematical special functions: // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2)) // 2.) gamma(s), a real-numbered extension of the integer factorial function // It also implements normalized_ligamma(s, z), a normalized lower incomplete // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can // be called with an _impl suffix to use an implementation version with a few // extra precomputed parameters (which may be useful for the caller to reuse). // See below for details. // // Design Rationale: // Pretty much every line of code in this file is duplicated four times for // different input types (float4/float3/float2/float). This is unfortunate, // but Cg doesn't allow function templates. Macros would be far less verbose, // but they would make the code harder to document and read. I don't expect // these functions will require a whole lot of maintenance changes unless // someone ever has need for more robust incomplete gamma functions, so code // duplication seems to be the lesser evil in this case. /////////////////////////// GAUSSIAN ERROR FUNCTION ////////////////////////// float4 erf6(float4 x) { // Requires: x is the standard parameter to erf(). // Returns: Return an Abramowitz/Stegun approximation of erf(), where: // erf(x) = 2/sqrt(pi) * integral(e**(-x**2)) // This approximation has a max absolute error of 2.5*10**-5 // with solid numerical robustness and efficiency. See: // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions static const float4 one = float4(1.0); const float4 sign_x = sign(x); const float4 t = one/(one + 0.47047*abs(x)); const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float3 erf6(const float3 x) { // Float3 version: static const float3 one = float3(1.0); const float3 sign_x = sign(x); const float3 t = one/(one + 0.47047*abs(x)); const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float2 erf6(const float2 x) { // Float2 version: static const float2 one = float2(1.0); const float2 sign_x = sign(x); const float2 t = one/(one + 0.47047*abs(x)); const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float erf6(const float x) { // Float version: const float sign_x = sign(x); const float t = 1.0/(1.0 + 0.47047*abs(x)); const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float4 erft(const float4 x) { // Requires: x is the standard parameter to erf(). // Returns: Approximate erf() with the hyperbolic tangent. The error is // visually noticeable, but it's blazing fast and perceptually // close...at least on ATI hardware. See: // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html // Warning: Only use this if your hardware drivers correctly implement // tanh(): My nVidia 8800GTS returns garbage output. return tanh(1.202760580 * x); } float3 erft(const float3 x) { // Float3 version: return tanh(1.202760580 * x); } float2 erft(const float2 x) { // Float2 version: return tanh(1.202760580 * x); } float erft(const float x) { // Float version: return tanh(1.202760580 * x); } inline float4 erf(const float4 x) { // Requires: x is the standard parameter to erf(). // Returns: Some approximation of erf(x), depending on user settings. #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } inline float3 erf(const float3 x) { // Float3 version: #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } inline float2 erf(const float2 x) { // Float2 version: #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } inline float erf(const float x) { // Float version: #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } /////////////////////////// COMPLETE GAMMA FUNCTION ////////////////////////// float4 gamma_impl(const float4 s, const float4 s_inv) { // Requires: 1.) s is the standard parameter to the gamma function, and // it should lie in the [0, 36] range. // 2.) s_inv = 1.0/s. This implementation function requires // the caller to precompute this value, giving users the // opportunity to reuse it. // Returns: Return approximate gamma function (real-numbered factorial) // output using the Lanczos approximation with two coefficients // calculated using Paul Godfrey's method here: // http://my.fit.edu/~gabdo/gamma.txt // An optimal g value for s in [0, 36] is ~1.12906830989, with // a maximum relative error of 0.000463 for 2**16 equally // evals. We could use three coeffs (0.0000346 error) without // hurting latency, but this allows more parallelism with // outside instructions. static const float4 g = float4(1.12906830989); static const float4 c0 = float4(0.8109119309638332633713423362694399653724431); static const float4 c1 = float4(0.4808354605142681877121661197951496120000040); static const float4 e = float4(2.71828182845904523536028747135266249775724709); const float4 sph = s + float4(0.5); const float4 lanczos_sum = c0 + c1/(s + float4(1.0)); const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s). // This has less error for small s's than (s -= 1.0) at the beginning. return (pow(base, sph) * lanczos_sum) * s_inv; } float3 gamma_impl(const float3 s, const float3 s_inv) { // Float3 version: static const float3 g = float3(1.12906830989); static const float3 c0 = float3(0.8109119309638332633713423362694399653724431); static const float3 c1 = float3(0.4808354605142681877121661197951496120000040); static const float3 e = float3(2.71828182845904523536028747135266249775724709); const float3 sph = s + float3(0.5); const float3 lanczos_sum = c0 + c1/(s + float3(1.0)); const float3 base = (sph + g)/e; return (pow(base, sph) * lanczos_sum) * s_inv; } float2 gamma_impl(const float2 s, const float2 s_inv) { // Float2 version: static const float2 g = float2(1.12906830989); static const float2 c0 = float2(0.8109119309638332633713423362694399653724431); static const float2 c1 = float2(0.4808354605142681877121661197951496120000040); static const float2 e = float2(2.71828182845904523536028747135266249775724709); const float2 sph = s + float2(0.5); const float2 lanczos_sum = c0 + c1/(s + float2(1.0)); const float2 base = (sph + g)/e; return (pow(base, sph) * lanczos_sum) * s_inv; } float gamma_impl(const float s, const float s_inv) { // Float version: static const float g = 1.12906830989; static const float c0 = 0.8109119309638332633713423362694399653724431; static const float c1 = 0.4808354605142681877121661197951496120000040; static const float e = 2.71828182845904523536028747135266249775724709; const float sph = s + 0.5; const float lanczos_sum = c0 + c1/(s + 1.0); const float base = (sph + g)/e; return (pow(base, sph) * lanczos_sum) * s_inv; } float4 gamma(const float4 s) { // Requires: s is the standard parameter to the gamma function, and it // should lie in the [0, 36] range. // Returns: Return approximate gamma function output with a maximum // relative error of 0.000463. See gamma_impl for details. return gamma_impl(s, float4(1.0)/s); } float3 gamma(const float3 s) { // Float3 version: return gamma_impl(s, float3(1.0)/s); } float2 gamma(const float2 s) { // Float2 version: return gamma_impl(s, float2(1.0)/s); } float gamma(const float s) { // Float version: return gamma_impl(s, 1.0/s); } //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) /////////////// // Lower incomplete gamma function for small s and z (implementation): float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv) { // Requires: 1.) s < ~0.5 // 2.) z <= ~0.775075 // 3.) s_inv = 1.0/s (precomputed for outside reuse) // Returns: A series representation for the lower incomplete gamma // function for small s and small z (4 terms). // The actual "rolled up" summation looks like: // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0; // sum = last_sign * last_pow / ((s + k) * last_factorial) // for(int i = 0; i < 4; ++i) // { // last_sign *= -1.0; last_pow *= z; last_factorial *= i; // sum += last_sign * last_pow / ((s + k) * last_factorial); // } // Unrolled, constant-unfolded and arranged for madds and parallelism: const float4 scale = pow(z, s); float4 sum = s_inv; // Summation iteration 0 result // Summation iterations 1, 2, and 3: const float4 z_sq = z*z; const float4 denom1 = s + float4(1.0); const float4 denom2 = 2.0*s + float4(4.0); const float4 denom3 = 6.0*s + float4(18.0); //float4 denom4 = 24.0*s + float4(96.0); sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; //sum += z_sq * z_sq / denom4; // Scale and return: return scale * sum; } float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv) { // Float3 version: const float3 scale = pow(z, s); float3 sum = s_inv; const float3 z_sq = z*z; const float3 denom1 = s + float3(1.0); const float3 denom2 = 2.0*s + float3(4.0); const float3 denom3 = 6.0*s + float3(18.0); sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; return scale * sum; } float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv) { // Float2 version: const float2 scale = pow(z, s); float2 sum = s_inv; const float2 z_sq = z*z; const float2 denom1 = s + float2(1.0); const float2 denom2 = 2.0*s + float2(4.0); const float2 denom3 = 6.0*s + float2(18.0); sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; return scale * sum; } float ligamma_small_z_impl(const float s, const float z, const float s_inv) { // Float version: const float scale = pow(z, s); float sum = s_inv; const float z_sq = z*z; const float denom1 = s + 1.0; const float denom2 = 2.0*s + 4.0; const float denom3 = 6.0*s + 18.0; sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; return scale * sum; } // Upper incomplete gamma function for small s and large z (implementation): float4 uigamma_large_z_impl(const float4 s, const float4 z) { // Requires: 1.) s < ~0.5 // 2.) z > ~0.775075 // Returns: Gauss's continued fraction representation for the upper // incomplete gamma function (4 terms). // The "rolled up" continued fraction looks like this. The denominator // is truncated, and it's calculated "from the bottom up:" // denom = float4('inf'); // float4 one = float4(1.0); // for(int i = 4; i > 0; --i) // { // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom; // } // Unrolled and constant-unfolded for madds and parallelism: const float4 numerator = pow(z, s) * exp(-z); float4 denom = float4(7.0) + z - s; denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom; denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom; denom = float4(1.0) + z - s + (s - float4(1.0))/denom; return numerator / denom; } float3 uigamma_large_z_impl(const float3 s, const float3 z) { // Float3 version: const float3 numerator = pow(z, s) * exp(-z); float3 denom = float3(7.0) + z - s; denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom; denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom; denom = float3(1.0) + z - s + (s - float3(1.0))/denom; return numerator / denom; } float2 uigamma_large_z_impl(const float2 s, const float2 z) { // Float2 version: const float2 numerator = pow(z, s) * exp(-z); float2 denom = float2(7.0) + z - s; denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom; denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom; denom = float2(1.0) + z - s + (s - float2(1.0))/denom; return numerator / denom; } float uigamma_large_z_impl(const float s, const float z) { // Float version: const float numerator = pow(z, s) * exp(-z); float denom = 7.0 + z - s; denom = 5.0 + z - s + (3.0*s - 9.0)/denom; denom = 3.0 + z - s + (2.0*s - 4.0)/denom; denom = 1.0 + z - s + (s - 1.0)/denom; return numerator / denom; } // Normalized lower incomplete gamma function for small s (implementation): float4 normalized_ligamma_impl(const float4 s, const float4 z, const float4 s_inv, const float4 gamma_s_inv) { // Requires: 1.) s < ~0.5 // 2.) s_inv = 1/s (precomputed for outside reuse) // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse) // Returns: Approximate the normalized lower incomplete gamma function // for s < 0.5. Since we only care about s < 0.5, we only need // to evaluate two branches (not four) based on z. Each branch // uses four terms, with a max relative error of ~0.00182. The // branch threshold and specifics were adapted for fewer terms // from Gil/Segura/Temme's paper here: // http://oai.cwi.nl/oai/asset/20433/20433B.pdf // Evaluate both branches: Real branches test slower even when available. static const float4 thresh = float4(0.775075); bool4 z_is_large; z_is_large.x = z.x > thresh.x; z_is_large.y = z.y > thresh.y; z_is_large.z = z.z > thresh.z; z_is_large.w = z.w > thresh.w; const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; // Combine the results from both branches: bool4 inverse_z_is_large = not(z_is_large); return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large); } float3 normalized_ligamma_impl(const float3 s, const float3 z, const float3 s_inv, const float3 gamma_s_inv) { // Float3 version: static const float3 thresh = float3(0.775075); bool3 z_is_large; z_is_large.x = z.x > thresh.x; z_is_large.y = z.y > thresh.y; z_is_large.z = z.z > thresh.z; const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; bool3 inverse_z_is_large = not(z_is_large); return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large); } float2 normalized_ligamma_impl(const float2 s, const float2 z, const float2 s_inv, const float2 gamma_s_inv) { // Float2 version: static const float2 thresh = float2(0.775075); bool2 z_is_large; z_is_large.x = z.x > thresh.x; z_is_large.y = z.y > thresh.y; const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; bool2 inverse_z_is_large = not(z_is_large); return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large); } float normalized_ligamma_impl(const float s, const float z, const float s_inv, const float gamma_s_inv) { // Float version: static const float thresh = 0.775075; const bool z_is_large = z > thresh; const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv; const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; return large_z * float(z_is_large) + small_z * float(!z_is_large); } // Normalized lower incomplete gamma function for small s: float4 normalized_ligamma(const float4 s, const float4 z) { // Requires: s < ~0.5 // Returns: Approximate the normalized lower incomplete gamma function // for s < 0.5. See normalized_ligamma_impl() for details. const float4 s_inv = float4(1.0)/s; const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } float3 normalized_ligamma(const float3 s, const float3 z) { // Float3 version: const float3 s_inv = float3(1.0)/s; const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } float2 normalized_ligamma(const float2 s, const float2 z) { // Float2 version: const float2 s_inv = float2(1.0)/s; const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } float normalized_ligamma(const float s, const float z) { // Float version: const float s_inv = 1.0/s; const float gamma_s_inv = 1.0/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } #endif // SPECIAL_FUNCTIONS_H //////////////////////////// END SPECIAL-FUNCTIONS /////////////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// /////////////////////////////////// HELPERS ////////////////////////////////// inline float4 uv2_to_uv4(float2 tex_uv) { // Make a float2 uv offset safe for adding to float4 tex2Dlod coords: return float4(tex_uv, 0.0, 0.0); } // Make a length squared helper macro (for usage with static constants): #define LENGTH_SQ(vec) (dot(vec, vec)) inline float get_fast_gaussian_weight_sum_inv(const float sigma) { // We can use the Gaussian integral to calculate the asymptotic weight for // the center pixel. Since the unnormalized center pixel weight is 1.0, // the normalized weight is the same as the weight sum inverse. Given a // large enough blur (9+), the asymptotic weight sum is close and faster: // center_weight = 0.5 * // (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0)))) // erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)): // However, we can get even faster results with curve-fitting. These are // also closer than the asymptotic results, because they were constructed // from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from // (0, blurN_std_dev), so the results for smaller sigmas are biased toward // smaller blurs. The max error is 0.0031793913. // Relative FPS: 134.3 with erf, 135.8 with curve-fitting. //static const float temp = 0.5/sqrt(2.0); //return erf(temp/sigma); return min(exp(exp(0.348348412457428/ (sigma - 0.0860587260734721))), 0.399334576340352/sigma); } //////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS /////////////////// float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur. // It may be mipmapped depending on settings and dxdy. // Calculate Gaussian blur kernel weights and a normalization factor for // distances of 0-4, ignoring constant factors (since we're normalizing). const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5)); // Statically normalize weights, sum weighted samples, and return. Blurs are // currently optimized for dynamic weights. float3 sum = float3(0.0,0.0,0.0); sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy).rgb; sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb; sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb; sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb; sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur. // It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb; sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb; sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur. // It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3)); // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb; sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur. // It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2)); // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb; sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur. // It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1); // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; return sum * weight_sum_inv; } /////////////////////////// FAST SEPARABLE BLURS /////////////////////////// float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: 1.) Global requirements must be met (see file description). // 2.) filter_linearN must = "true" in your .cgp file. // 3.) For gamma-correct bilinear filtering, global // gamma_aware_bilinear == true (from gamma-management.h) // Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5)); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w01 = w0 * 0.5 + w1; const float w23 = w2 + w3; const float w45 = w4 + w5; const float w01_ratio = w1/w01; const float w23_ratio = w3/w23; const float w45_ratio = w5/w45; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy).rgb; sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb; sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb; sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb; sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb; sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest // neighbor and 4 linear taps. It may be mipmapped depending // on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); // Calculate combined weights and linear sample ratios between texel pairs. const float w12 = w1 + w2; const float w34 = w3 + w4; const float w12_ratio = w2/w12; const float w34_ratio = w4/w34; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy).rgb; sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb; sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3)); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w01 = w0 * 0.5 + w1; const float w23 = w2 + w3; const float w01_ratio = w1/w01; const float w23_ratio = w3/w23; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb; sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb; sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb; sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest // neighbor and 2 linear taps. It may be mipmapped depending // on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2)); // Calculate combined weights and linear sample ratios between texel pairs. const float w12 = w1 + w2; const float w12_ratio = w2/w12; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w01 = w0 * 0.5 + w1; const float w01_ratio = w1/w01; // Weights for all samples are the same, so just average them: return 0.5 * ( tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb + tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb); } //////////////////////////// HUGE SEPARABLE BLURS //////////////////////////// // Huge separable blurs come only in "fast" versions. float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float w6 = exp(-36.0 * denom_inv); const float w7 = exp(-49.0 * denom_inv); const float w8 = exp(-64.0 * denom_inv); const float w9 = exp(-81.0 * denom_inv); const float w10 = exp(-100.0 * denom_inv); const float w11 = exp(-121.0 * denom_inv); const float w12 = exp(-144.0 * denom_inv); const float w13 = exp(-169.0 * denom_inv); const float w14 = exp(-196.0 * denom_inv); const float w15 = exp(-225.0 * denom_inv); const float w16 = exp(-256.0 * denom_inv); const float w17 = exp(-289.0 * denom_inv); const float w18 = exp(-324.0 * denom_inv); const float w19 = exp(-361.0 * denom_inv); const float w20 = exp(-400.0 * denom_inv); const float w21 = exp(-441.0 * denom_inv); //const float weight_sum_inv = 1.0 / // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + // w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21)); const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w0_1 = w0 * 0.5 + w1; const float w2_3 = w2 + w3; const float w4_5 = w4 + w5; const float w6_7 = w6 + w7; const float w8_9 = w8 + w9; const float w10_11 = w10 + w11; const float w12_13 = w12 + w13; const float w14_15 = w14 + w15; const float w16_17 = w16 + w17; const float w18_19 = w18 + w19; const float w20_21 = w20 + w21; const float w0_1_ratio = w1/w0_1; const float w2_3_ratio = w3/w2_3; const float w4_5_ratio = w5/w4_5; const float w6_7_ratio = w7/w6_7; const float w8_9_ratio = w9/w8_9; const float w10_11_ratio = w11/w10_11; const float w12_13_ratio = w13/w12_13; const float w14_15_ratio = w15/w14_15; const float w16_17_ratio = w17/w16_17; const float w18_19_ratio = w19/w18_19; const float w20_21_ratio = w21/w20_21; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb; sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb; sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb; sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb; sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb; sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb; sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb; sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb; sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb; sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb; sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb; sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb; sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb; sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb; sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb; sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb; sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb; sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb; sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb; sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb; sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb; sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float w6 = exp(-36.0 * denom_inv); const float w7 = exp(-49.0 * denom_inv); const float w8 = exp(-64.0 * denom_inv); const float w9 = exp(-81.0 * denom_inv); const float w10 = exp(-100.0 * denom_inv); const float w11 = exp(-121.0 * denom_inv); const float w12 = exp(-144.0 * denom_inv); const float w13 = exp(-169.0 * denom_inv); const float w14 = exp(-196.0 * denom_inv); const float w15 = exp(-225.0 * denom_inv); //const float weight_sum_inv = 1.0 / // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + // w9 + w10 + w11 + w12 + w13 + w14 + w15)); const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w0_1 = w0 * 0.5 + w1; const float w2_3 = w2 + w3; const float w4_5 = w4 + w5; const float w6_7 = w6 + w7; const float w8_9 = w8 + w9; const float w10_11 = w10 + w11; const float w12_13 = w12 + w13; const float w14_15 = w14 + w15; const float w0_1_ratio = w1/w0_1; const float w2_3_ratio = w3/w2_3; const float w4_5_ratio = w5/w4_5; const float w6_7_ratio = w7/w6_7; const float w8_9_ratio = w9/w8_9; const float w10_11_ratio = w11/w10_11; const float w12_13_ratio = w13/w12_13; const float w14_15_ratio = w15/w14_15; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb; sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb; sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb; sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb; sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb; sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb; sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb; sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb; sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb; sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb; sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb; sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb; sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb; sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb; sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb; sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest // neighbor and 12 linear taps. It may be mipmapped depending // on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float w6 = exp(-36.0 * denom_inv); const float w7 = exp(-49.0 * denom_inv); const float w8 = exp(-64.0 * denom_inv); const float w9 = exp(-81.0 * denom_inv); const float w10 = exp(-100.0 * denom_inv); const float w11 = exp(-121.0 * denom_inv); const float w12 = exp(-144.0 * denom_inv); //const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12)); const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); // Calculate combined weights and linear sample ratios between texel pairs. const float w1_2 = w1 + w2; const float w3_4 = w3 + w4; const float w5_6 = w5 + w6; const float w7_8 = w7 + w8; const float w9_10 = w9 + w10; const float w11_12 = w11 + w12; const float w1_2_ratio = w2/w1_2; const float w3_4_ratio = w4/w3_4; const float w5_6_ratio = w6/w5_6; const float w7_8_ratio = w8/w7_8; const float w9_10_ratio = w10/w9_10; const float w11_12_ratio = w12/w11_12; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb; sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb; sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb; sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb; sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb; sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb; sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb; sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb; sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb; sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb; sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest // neighbor and 8 linear taps. It may be mipmapped depending // on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float w6 = exp(-36.0 * denom_inv); const float w7 = exp(-49.0 * denom_inv); const float w8 = exp(-64.0 * denom_inv); //const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8)); const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); // Calculate combined weights and linear sample ratios between texel pairs. const float w1_2 = w1 + w2; const float w3_4 = w3 + w4; const float w5_6 = w5 + w6; const float w7_8 = w7 + w8; const float w1_2_ratio = w2/w1_2; const float w3_4_ratio = w4/w3_4; const float w5_6_ratio = w6/w5_6; const float w7_8_ratio = w8/w7_8; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb; sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb; sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb; sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb; sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb; sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb; sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb; return sum * weight_sum_inv; } //////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS //////////////////// float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the // resized input. // Description: // This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize // would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize. const float denom_inv = 0.5/(sigma*sigma); // Load each sample. We need all 3x3 samples. Quad-pixel communication // won't help either: This should perform like tex2Dblur5x5, but sharing a // 4x4 sample field would perform more like tex2Dblur8x8shared (worse). const float2 sample4_uv = tex_uv; const float2 dx = float2(dxdy.x, 0.0); const float2 dy = float2(0.0, dxdy.y); const float2 sample1_uv = sample4_uv - dy; const float2 sample7_uv = sample4_uv + dy; const float3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb; const float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb; const float3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb; const float3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb; const float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb; const float3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb; const float3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb; const float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb; const float3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb; // Statically compute Gaussian sample weights: const float w4 = 1.0; const float w1_3_5_7 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv); const float w0_2_6_8 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8)); // Weight and sum the samples: const float3 sum = w4 * sample4 + w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) + w0_2_6_8 * (sample0 + sample2 + sample6 + sample8); return sum * weight_sum_inv; } //////////////////////////// FASTER ONE-PASS BLURS /////////////////////////// float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. // Requires: Same as tex2Dblur9() // Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of // 5x5 carefully selected bilinear samples. // Description: // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the // bilinear sample location to reflect the true Gaussian weights for each // underlying texel. The following diagram illustrates the relative // locations of bilinear samples. Each sample with the same number has the // same weight (notice the symmetry). The letters a, b, c, d distinguish // quadrants, and the letters U, D, L, R, C (up, down, left, right, center) // distinguish 1D directions along the line containing the pixel center: // 6a 5a 2U 5b 6b // 4a 3a 1U 3b 4b // 2L 1L 0C 1R 2R // 4c 3c 1D 3d 4d // 6c 5c 2D 5d 6d // The following diagram illustrates the underlying equally spaced texels, // named after the sample that accesses them and subnamed by their location // within their 2x2, 2x1, 1x2, or 1x1 texel block: // 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4 // 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2 // 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4 // 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2 // 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2 // 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2 // 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4 // 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2 // 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4 // Note there is only one C texel and only two texels for each U, D, L, or // R sample. The center sample is effectively a nearest neighbor sample, // and the U/D/L/R samples use 1D linear filtering. All other texels are // read with bilinear samples somewhere within their 2x2 texel blocks. // COMPUTE TEXTURE COORDS: // Statically compute sampling offsets within each 2x2 texel block, based // on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from // the center, and reuse them independently for both dimensions. Compute // these offsets based on the relative 1D Gaussian weights of the texels // in question. (w1off means "Gaussian weight for the texel 1.0 texels // away from the pixel center," etc.). const float denom_inv = 0.5/(sigma*sigma); const float w1off = exp(-1.0 * denom_inv); const float w2off = exp(-4.0 * denom_inv); const float w3off = exp(-9.0 * denom_inv); const float w4off = exp(-16.0 * denom_inv); const float texel1to2ratio = w2off/(w1off + w2off); const float texel3to4ratio = w4off/(w3off + w4off); // Statically compute texel offsets from the fragment center to each // bilinear sample in the bottom-right quadrant, including x-axis-aligned: const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0); const float2 sample2R_texel_offset = float2(3.0, 0.0) + float2(texel3to4ratio, 0.0); const float2 sample3d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio); const float2 sample4d_texel_offset = float2(3.0, 1.0) + float2(texel3to4ratio, texel1to2ratio); const float2 sample5d_texel_offset = float2(1.0, 3.0) + float2(texel1to2ratio, texel3to4ratio); const float2 sample6d_texel_offset = float2(3.0, 3.0) + float2(texel3to4ratio, texel3to4ratio); // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: // Statically compute Gaussian texel weights for the bottom-right quadrant. // Read underscores as "and." const float w1R1 = w1off; const float w1R2 = w2off; const float w2R1 = w3off; const float w2R2 = w4off; const float w3d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); const float w3d2_3d3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv); const float w3d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv); const float w4d1_5d1 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv); const float w4d2_5d3 = exp(-LENGTH_SQ(float2(4.0, 1.0)) * denom_inv); const float w4d3_5d2 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv); const float w4d4_5d4 = exp(-LENGTH_SQ(float2(4.0, 2.0)) * denom_inv); const float w6d1 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv); const float w6d2_6d3 = exp(-LENGTH_SQ(float2(4.0, 3.0)) * denom_inv); const float w6d4 = exp(-LENGTH_SQ(float2(4.0, 4.0)) * denom_inv); // Statically add texel weights in each sample to get sample weights: const float w0 = 1.0; const float w1 = w1R1 + w1R2; const float w2 = w2R1 + w2R2; const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4; const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4; const float w5 = w4; const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4; // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6)); // LOAD TEXTURE SAMPLES: // Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry: const float2 mirror_x = float2(-1.0, 1.0); const float2 mirror_y = float2(1.0, -1.0); const float2 mirror_xy = float2(-1.0, -1.0); const float2 dxdy_mirror_x = dxdy * mirror_x; const float2 dxdy_mirror_y = dxdy * mirror_y; const float2 dxdy_mirror_xy = dxdy * mirror_xy; // Sampling order doesn't seem to affect performance, so just be clear: const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb; const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb; const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb; const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb; const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb; const float3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset).rgb; const float3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx).rgb; const float3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset).rgb; const float3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx).rgb; const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb; const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb; const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb; const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb; const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb; const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb; const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb; const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb; const float3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset).rgb; const float3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb; const float3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb; const float3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb; const float3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset).rgb; const float3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb; const float3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb; const float3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb; // SUM WEIGHTED SAMPLES: // Statically normalize weights (so total = 1.0), and sum weighted samples. float3 sum = w0 * sample0C; sum += w1 * (sample1R + sample1D + sample1L + sample1U); sum += w2 * (sample2R + sample2D + sample2L + sample2U); sum += w3 * (sample3d + sample3c + sample3b + sample3a); sum += w4 * (sample4d + sample4c + sample4b + sample4a); sum += w5 * (sample5d + sample5c + sample5b + sample5a); sum += w6 * (sample6d + sample6c + sample6b + sample6a); return sum * weight_sum_inv; } float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Perform a 1-pass 7x7 blur with 5x5 bilinear samples. // Requires: Same as tex2Dblur9() // Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of // 4x4 carefully selected bilinear samples. // Description: // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This // blur mixes concepts from both. The sample layout is as follows: // 4a 3a 3b 4b // 2a 1a 1b 2b // 2c 1c 1d 2d // 4c 3c 3d 4d // The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d, // and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c, // 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share // the center texel): // 4a4 4a3 3a4 3ab3 3b4 4b3 4b4 // 4a2 4a1 3a2 3ab1 3b2 4b1 4b2 // 2a4 2a3 1a4 1ab3 1b4 2b3 2b4 // 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2 // 2c4 2c3 1c4 1cd3 1d4 2d3 2d4 // 4c2 4c1 3c2 3cd1 3d2 4d1 4d2 // 4c4 4c3 3c4 3cd3 3d4 4d3 4d4 // COMPUTE TEXTURE COORDS: // Statically compute bilinear sampling offsets (details in tex2Dblur9x9). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w1off = exp(-1.0 * denom_inv); const float w2off = exp(-4.0 * denom_inv); const float w3off = exp(-9.0 * denom_inv); const float texel0to1ratio = w1off/(w0off * 0.5 + w1off); const float texel2to3ratio = w3off/(w2off + w3off); // Statically compute texel offsets from the fragment center to each // bilinear sample in the bottom-right quadrant, including axis-aligned: const float2 sample1d_texel_offset = float2(texel0to1ratio, texel0to1ratio); const float2 sample2d_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample3d_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample4d_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: // Statically compute Gaussian texel weights for the bottom-right quadrant. // Read underscores as "and." const float w1abcd = 1.0; const float w1bd2_1cd3 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv); const float w2bd1_3cd1 = exp(-LENGTH_SQ(float2(2.0, 0.0)) * denom_inv); const float w2bd2_3cd2 = exp(-LENGTH_SQ(float2(3.0, 0.0)) * denom_inv); const float w1d4 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); const float w2d3_3d2 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv); const float w2d4_3d4 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv); const float w4d1 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv); const float w4d2_4d3 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv); const float w4d4 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv); // Statically add texel weights in each sample to get sample weights. // Split weights for shared texels between samples sharing them: const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4; const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4; const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4; // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(4.0 * (w1 + 2.0 * w2_3 + w4)); // LOAD TEXTURE SAMPLES: // Load all 16 samples using symmetry: const float2 mirror_x = float2(-1.0, 1.0); const float2 mirror_y = float2(1.0, -1.0); const float2 mirror_xy = float2(-1.0, -1.0); const float2 dxdy_mirror_x = dxdy * mirror_x; const float2 dxdy_mirror_y = dxdy * mirror_y; const float2 dxdy_mirror_xy = dxdy * mirror_xy; const float3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb; const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb; const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb; const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb; const float3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb; const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb; const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb; const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb; const float3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb; const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb; const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb; const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb; const float3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset).rgb; const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb; const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb; const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb; // SUM WEIGHTED SAMPLES: // Statically normalize weights (so total = 1.0), and sum weighted samples. float3 sum = float3(0.0,0.0,0.0); sum += w1 * (sample1a + sample1b + sample1c + sample1d); sum += w2_3 * (sample2a + sample2b + sample2c + sample2d); sum += w2_3 * (sample3a + sample3b + sample3c + sample3d); sum += w4 * (sample4a + sample4b + sample4c + sample4d); return sum * weight_sum_inv; } float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Perform a 1-pass 5x5 blur with 3x3 bilinear samples. // Requires: Same as tex2Dblur9() // Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of // 3x3 carefully selected bilinear samples. // Description: // First see the description for tex2Dblur9x9(). This blur uses the same // concept and sample/texel locations except on a smaller scale. Samples: // 2a 1U 2b // 1L 0C 1R // 2c 1D 2d // Texels: // 2a4 2a3 1U2 2b3 2b4 // 2a2 2a1 1U1 2b1 2b2 // 1L2 1L1 0C1 1R1 1R2 // 2c2 2c1 1D1 2d1 2d2 // 2c4 2c3 1D2 2d3 2d4 // COMPUTE TEXTURE COORDS: // Statically compute bilinear sampling offsets (details in tex2Dblur9x9). const float denom_inv = 0.5/(sigma*sigma); const float w1off = exp(-1.0 * denom_inv); const float w2off = exp(-4.0 * denom_inv); const float texel1to2ratio = w2off/(w1off + w2off); // Statically compute texel offsets from the fragment center to each // bilinear sample in the bottom-right quadrant, including x-axis-aligned: const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0); const float2 sample2d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio); // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: // Statically compute Gaussian texel weights for the bottom-right quadrant. // Read underscores as "and." const float w1R1 = w1off; const float w1R2 = w2off; const float w2d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); const float w2d2_3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv); const float w2d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv); // Statically add texel weights in each sample to get sample weights: const float w0 = 1.0; const float w1 = w1R1 + w1R2; const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4; // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2)); // LOAD TEXTURE SAMPLES: // Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry: const float2 mirror_x = float2(-1.0, 1.0); const float2 mirror_y = float2(1.0, -1.0); const float2 mirror_xy = float2(-1.0, -1.0); const float2 dxdy_mirror_x = dxdy * mirror_x; const float2 dxdy_mirror_y = dxdy * mirror_y; const float2 dxdy_mirror_xy = dxdy * mirror_xy; const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb; const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb; const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb; const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb; const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb; const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb; const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb; const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb; const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb; // SUM WEIGHTED SAMPLES: // Statically normalize weights (so total = 1.0), and sum weighted samples. float3 sum = w0 * sample0C; sum += w1 * (sample1R + sample1D + sample1L + sample1U); sum += w2 * (sample2a + sample2b + sample2c + sample2d); return sum * weight_sum_inv; } float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Perform a 1-pass 3x3 blur with 5x5 bilinear samples. // Requires: Same as tex2Dblur9() // Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of // 2x2 carefully selected bilinear samples. // Description: // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This // blur mixes concepts from both. The sample layout is as follows: // 0a 0b // 0c 0d // The texel layout is as follows. Note that samples 0a/0b and 0c/0d share // a vertical column of texels, and samples 0a/0c and 0b/0d share a // horizontal row of texels (all samples share the center texel): // 0a3 0ab2 0b3 // 0ac1 0*0 0bd1 // 0c3 0cd2 0d3 // COMPUTE TEXTURE COORDS: // Statically compute bilinear sampling offsets (details in tex2Dblur9x9). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w1off = exp(-1.0 * denom_inv); const float texel0to1ratio = w1off/(w0off * 0.5 + w1off); // Statically compute texel offsets from the fragment center to each // bilinear sample in the bottom-right quadrant, including axis-aligned: const float2 sample0d_texel_offset = float2(texel0to1ratio, texel0to1ratio); // LOAD TEXTURE SAMPLES: // Load all 4 samples using symmetry: const float2 mirror_x = float2(-1.0, 1.0); const float2 mirror_y = float2(1.0, -1.0); const float2 mirror_xy = float2(-1.0, -1.0); const float2 dxdy_mirror_x = dxdy * mirror_x; const float2 dxdy_mirror_y = dxdy * mirror_y; const float2 dxdy_mirror_xy = dxdy * mirror_xy; const float3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb; const float3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb; const float3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb; const float3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset).rgb; // SUM WEIGHTED SAMPLES: // Weights for all samples are the same, so just average them: return 0.25 * (sample0a + sample0b + sample0c + sample0d); } ////////////////// LINEAR ONE-PASS BLURS WITH SHARED SAMPLES ///////////////// float3 tex2Dblur12x12shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector, const float sigma) { // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. // Requires: 1.) Same as tex2Dblur9() // 2.) ddx() and ddy() are present in the current Cg profile. // 3.) The GPU driver is using fine/high-quality derivatives. // 4.) quad_vector *correctly* describes the current fragment's // location in its pixel quad, by the conventions noted in // get_quad_vector[_naive]. // 5.) tex_uv.w = log2(video_size/output_size).y // 6.) tex2Dlod() is present in the current Cg profile. // Optional: Tune artifacts vs. excessive blurriness with the global // float error_blurring. // Returns: A blurred texture lookup using a "virtual" 12x12 Gaussian // blur (a 6x6 blur of carefully selected bilinear samples) // of the given mip level. There will be subtle inaccuracies, // especially for small or high-frequency detailed sources. // Description: // Perform a 1-pass blur with shared texture lookups across a pixel quad. // We'll get neighboring samples with high-quality ddx/ddy derivatives, as // in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad // Message Passing" by Eric Penner. // // Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12 // bilinear samples, where bilinear sampling positions are computed from // the relative Gaussian weights of the 4 surrounding texels. The catch is // that the appropriate texel weights and sample coords differ for each // fragment, but we're reusing most of the same samples across a quad of // destination fragments. (We do use unique coords for the four nearest // samples at each fragment.) Mixing bilinear filtering and sample-sharing // therefore introduces some error into the weights, and this can get nasty // when the source image is small or high-frequency. Computing bilinear // ratios based on weights at the sample field center results in sharpening // and ringing artifacts, but we can move samples closer to halfway between // texels to try blurring away the error (which can move features around by // a texel or so). Tune this with the global float "error_blurring". // // The pixel quad's sample field covers 12x12 texels, accessed through 6x6 // bilinear (2x2 texel) taps. Each fragment depends on a window of 10x10 // texels (5x5 bilinear taps), and each fragment is responsible for loading // a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps // to use unique bilinear coords for sample0* for each fragment. This // diagram illustrates the relative locations of bilinear samples 1-9 for // each quadrant a, b, c, d (note samples will not be equally spaced): // 8a 7a 6a 6b 7b 8b // 5a 4a 3a 3b 4b 5b // 2a 1a 0a 0b 1b 2b // 2c 1c 0c 0d 1d 2d // 5c 4c 3c 3d 4d 5d // 8c 7c 6c 6d 7d 8d // The following diagram illustrates the underlying equally spaced texels, // named after the sample that accesses them and subnamed by their location // within their 2x2 texel block: // 8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3 // 8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1 // 5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3 // 5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1 // 2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3 // 2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1 // 2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1 // 2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3 // 5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1 // 5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3 // 8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1 // 8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3 // With this symmetric arrangement, we don't have to know which absolute // quadrant a sample lies in to assign kernel weights; it's enough to know // the sample number and the relative quadrant of the sample (relative to // the current quadrant): // {current, adjacent x, adjacent y, diagonal} // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Statically compute sampling offsets within each 2x2 texel block, based // on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3], // and [4, 5] away from the fragment, and reuse them independently for both // dimensions. Use the sample field center as the estimated destination, // but nudge the result closer to halfway between texels to blur error. const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w0_5off = exp(-(0.5*0.5) * denom_inv); const float w1off = exp(-(1.0*1.0) * denom_inv); const float w1_5off = exp(-(1.5*1.5) * denom_inv); const float w2off = exp(-(2.0*2.0) * denom_inv); const float w2_5off = exp(-(2.5*2.5) * denom_inv); const float w3_5off = exp(-(3.5*3.5) * denom_inv); const float w4_5off = exp(-(4.5*4.5) * denom_inv); const float w5_5off = exp(-(5.5*5.5) * denom_inv); const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring); // We don't share sample0*, so use the nearest destination fragment: const float texel0to1ratio_nearest = w1off/(w0off + w1off); const float texel1to2ratio_nearest = w2off/(w1off + w2off); // Statically compute texel offsets from the bottom-right fragment to each // bilinear sample in the bottom-right quadrant: const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio); const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio); const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio); const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio); const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio); // CALCULATE KERNEL WEIGHTS: // Statically compute bilinear sample weights at each destination fragment // based on the sum of their 4 underlying texel weights. Assume a same- // resolution blur, so each symmetrically named sample weight will compute // the same at every fragment in the pixel quad: We can therefore compute // texel weights based only on the bottom-right quadrant (fragment at 0d0). // Too avoid too much boilerplate code, use a macro to get all 4 texel // weights for a bilinear sample based on the offset of its top-left texel: #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0); const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0); const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0); const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0); const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0); const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0); const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0); const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0); const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0); const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0); const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0); const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0); const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0); const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0); const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0); const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0); const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0); const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0); const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0); const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0); #undef GET_TEXEL_QUAD_WEIGHTS // Statically pack weights for runtime: const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag); const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag); const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag); const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag); const float4 w5 = float4(w5curr, w5adjx, w5adjy, w5diag); const float4 w6 = float4(w6curr, w6adjx, w6adjy, w6diag); const float4 w7 = float4(w7curr, w7adjx, w7adjy, w7diag); const float4 w8 = float4(w8curr, w8adjx, w8adjy, w8diag); // Get the weight sum inverse (normalization factor): const float4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8; const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw; const float weight_sum = weight_sum2.x + weight_sum2.y; const float weight_sum_inv = 1.0/(weight_sum); // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: const float2 dxdy_curr = dxdy * quad_vector.xy; // Load bilinear samples for the current quadrant (for this fragment): const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb; const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb; const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb; const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb; const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb; // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: // Fetch the samples from other fragments in the 2x2 quad: float3 sample1adjx, sample1adjy, sample1diag; float3 sample2adjx, sample2adjy, sample2diag; float3 sample3adjx, sample3adjy, sample3diag; float3 sample4adjx, sample4adjy, sample4diag; float3 sample5adjx, sample5adjy, sample5diag; float3 sample6adjx, sample6adjy, sample6diag; float3 sample7adjx, sample7adjy, sample7diag; float3 sample8adjx, sample8adjy, sample8diag; quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag); quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag); quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag); quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag); quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag); // Statically normalize weights (so total = 1.0), and sum weighted samples. // Fill each row of a matrix with an rgb sample and pre-multiply by the // weights to obtain a weighted result: float3 sum = float3(0.0,0.0,0.0); sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag)); sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag)); sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag)); sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag)); sum += mul(w5, float4x3(sample5curr, sample5adjx, sample5adjy, sample5diag)); sum += mul(w6, float4x3(sample6curr, sample6adjx, sample6adjy, sample6diag)); sum += mul(w7, float4x3(sample7curr, sample7adjx, sample7adjy, sample7diag)); sum += mul(w8, float4x3(sample8curr, sample8adjx, sample8adjy, sample8diag)); return sum * weight_sum_inv; } float3 tex2Dblur10x10shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector, const float sigma) { // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. // Requires: Same as tex2Dblur12x12shared() // Returns: A blurred texture lookup using a "virtual" 10x10 Gaussian // blur (a 5x5 blur of carefully selected bilinear samples) // of the given mip level. There will be subtle inaccuracies, // especially for small or high-frequency detailed sources. // Description: // First see the description for tex2Dblur12x12shared(). This // function shares the same concept and sample placement, but each fragment // only uses 25 of the 36 samples taken across the pixel quad (to cover a // 5x5 sample area, or 10x10 texel area), and it uses a lower standard // deviation to compensate. Thanks to symmetry, the 11 omitted samples // are always the "same:" // 8adjx, 2adjx, 5adjx, // 6adjy, 7adjy, 8adjy, // 2diag, 5diag, 6diag, 7diag, 8diag // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w0_5off = exp(-(0.5*0.5) * denom_inv); const float w1off = exp(-(1.0*1.0) * denom_inv); const float w1_5off = exp(-(1.5*1.5) * denom_inv); const float w2off = exp(-(2.0*2.0) * denom_inv); const float w2_5off = exp(-(2.5*2.5) * denom_inv); const float w3_5off = exp(-(3.5*3.5) * denom_inv); const float w4_5off = exp(-(4.5*4.5) * denom_inv); const float w5_5off = exp(-(5.5*5.5) * denom_inv); const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring); // We don't share sample0*, so use the nearest destination fragment: const float texel0to1ratio_nearest = w1off/(w0off + w1off); const float texel1to2ratio_nearest = w2off/(w1off + w2off); // Statically compute texel offsets from the bottom-right fragment to each // bilinear sample in the bottom-right quadrant: const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio); const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio); const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio); const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio); const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio); // CALCULATE KERNEL WEIGHTS: // Statically compute bilinear sample weights at each destination fragment // from the sum of their 4 texel weights (details in tex2Dblur12x12shared). #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) // We only need 25 of the 36 sample weights. Skip the following weights: // 8adjx, 2adjx, 5adjx, // 6adjy, 7adjy, 8adjy, // 2diag, 5diag, 6diag, 7diag, 8diag const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0); const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0); const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0); const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0); const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0); const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0); const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0); const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0); const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0); #undef GET_TEXEL_QUAD_WEIGHTS // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr + w4curr + w5curr + w6curr + w7curr + w8curr + w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx + w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy + w0diag + w1diag + w3diag + w4diag); // Statically pack most weights for runtime. Note the mixed packing: const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag); const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag); const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag); const float4 w2and5 = float4(w2curr, w2adjy, w5curr, w5adjy); const float4 w6and7 = float4(w6curr, w6adjx, w7curr, w7adjx); // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: const float2 dxdy_curr = dxdy * quad_vector.xy; // Load bilinear samples for the current quadrant (for this fragment): const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb; const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb; const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb; const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb; const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb; // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: // Fetch the samples from other fragments in the 2x2 quad in order of need: float3 sample1adjx, sample1adjy, sample1diag; float3 sample2adjx, sample2adjy, sample2diag; float3 sample3adjx, sample3adjy, sample3diag; float3 sample4adjx, sample4adjy, sample4diag; float3 sample5adjx, sample5adjy, sample5diag; float3 sample6adjx, sample6adjy, sample6diag; float3 sample7adjx, sample7adjy, sample7diag; quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag); quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag); quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag); quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag); // Statically normalize weights (so total = 1.0), and sum weighted samples. // Fill each row of a matrix with an rgb sample and pre-multiply by the // weights to obtain a weighted result. First do the simple ones: float3 sum = float3(0.0,0.0,0.0); sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag)); sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag)); sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag)); // Now do the mixed-sample ones: sum += mul(w2and5, float4x3(sample2curr, sample2adjy, sample5curr, sample5adjy)); sum += mul(w6and7, float4x3(sample6curr, sample6adjx, sample7curr, sample7adjx)); sum += w8curr * sample8curr; // Normalize the sum (so the weights add to 1.0) and return: return sum * weight_sum_inv; } float3 tex2Dblur8x8shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector, const float sigma) { // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. // Requires: Same as tex2Dblur12x12shared() // Returns: A blurred texture lookup using a "virtual" 8x8 Gaussian // blur (a 4x4 blur of carefully selected bilinear samples) // of the given mip level. There will be subtle inaccuracies, // especially for small or high-frequency detailed sources. // Description: // First see the description for tex2Dblur12x12shared(). This function // shares the same concept and a similar sample placement, except each // quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3 // respectively. There could be a total of 16 samples, 4 of which each // fragment is responsible for, but each fragment loads 0a/0b/0c/0d with // its own offset to reduce shared sample artifacts, bringing the sample // count for each fragment to 7. Sample placement: // 3a 2a 2b 3b // 1a 0a 0b 1b // 1c 0c 0d 1d // 3c 2c 2d 3d // Texel placement: // 3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3 // 3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1 // 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 // 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 // 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 // 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 // 3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1 // 3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3 // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w0_5off = exp(-(0.5*0.5) * denom_inv); const float w1off = exp(-(1.0*1.0) * denom_inv); const float w1_5off = exp(-(1.5*1.5) * denom_inv); const float w2off = exp(-(2.0*2.0) * denom_inv); const float w2_5off = exp(-(2.5*2.5) * denom_inv); const float w3_5off = exp(-(3.5*3.5) * denom_inv); const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); // We don't share sample0*, so use the nearest destination fragment: const float texel0to1ratio_nearest = w1off/(w0off + w1off); const float texel1to2ratio_nearest = w2off/(w1off + w2off); // Statically compute texel offsets from the bottom-right fragment to each // bilinear sample in the bottom-right quadrant: const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); // CALCULATE KERNEL WEIGHTS: // Statically compute bilinear sample weights at each destination fragment // from the sum of their 4 texel weights (details in tex2Dblur12x12shared). #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); #undef GET_TEXEL_QUAD_WEIGHTS // Statically pack weights for runtime: const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag); const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag); const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag); // Get the weight sum inverse (normalization factor): const float4 weight_sum4 = w0 + w1 + w2 + w3; const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw; const float weight_sum = weight_sum2.x + weight_sum2.y; const float weight_sum_inv = 1.0/(weight_sum); // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: const float2 dxdy_curr = dxdy * quad_vector.xy; // Load bilinear samples for the current quadrant (for this fragment): const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: // Fetch the samples from other fragments in the 2x2 quad: float3 sample1adjx, sample1adjy, sample1diag; float3 sample2adjx, sample2adjy, sample2diag; float3 sample3adjx, sample3adjy, sample3diag; quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); // Statically normalize weights (so total = 1.0), and sum weighted samples. // Fill each row of a matrix with an rgb sample and pre-multiply by the // weights to obtain a weighted result: float3 sum = float3(0.0,0.0,0.0); sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag)); sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag)); sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag)); return sum * weight_sum_inv; } float3 tex2Dblur6x6shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector, const float sigma) { // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. // Requires: Same as tex2Dblur12x12shared() // Returns: A blurred texture lookup using a "virtual" 6x6 Gaussian // blur (a 3x3 blur of carefully selected bilinear samples) // of the given mip level. There will be some inaccuracies,subtle inaccuracies, // especially for small or high-frequency detailed sources. // Description: // First see the description for tex2Dblur8x8shared(). This // function shares the same concept and sample placement, but each fragment // only uses 9 of the 16 samples taken across the pixel quad (to cover a // 3x3 sample area, or 6x6 texel area), and it uses a lower standard // deviation to compensate. Thanks to symmetry, the 7 omitted samples // are always the "same:" // 1adjx, 3adjx // 2adjy, 3adjy // 1diag, 2diag, 3diag // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w0_5off = exp(-(0.5*0.5) * denom_inv); const float w1off = exp(-(1.0*1.0) * denom_inv); const float w1_5off = exp(-(1.5*1.5) * denom_inv); const float w2off = exp(-(2.0*2.0) * denom_inv); const float w2_5off = exp(-(2.5*2.5) * denom_inv); const float w3_5off = exp(-(3.5*3.5) * denom_inv); const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); // We don't share sample0*, so use the nearest destination fragment: const float texel0to1ratio_nearest = w1off/(w0off + w1off); const float texel1to2ratio_nearest = w2off/(w1off + w2off); // Statically compute texel offsets from the bottom-right fragment to each // bilinear sample in the bottom-right quadrant: const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); // CALCULATE KERNEL WEIGHTS: // Statically compute bilinear sample weights at each destination fragment // from the sum of their 4 texel weights (details in tex2Dblur12x12shared). #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) // We only need 9 of the 16 sample weights. Skip the following weights: // 1adjx, 3adjx // 2adjy, 3adjy // 1diag, 2diag, 3diag const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); #undef GET_TEXEL_QUAD_WEIGHTS // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr + w0adjx + w2adjx + w0adjy + w1adjy + w0diag); // Statically pack some weights for runtime: const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: const float2 dxdy_curr = dxdy * quad_vector.xy; // Load bilinear samples for the current quadrant (for this fragment): const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: // Fetch the samples from other fragments in the 2x2 quad: float3 sample1adjx, sample1adjy, sample1diag; float3 sample2adjx, sample2adjy, sample2diag; quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); // Statically normalize weights (so total = 1.0), and sum weighted samples. // Fill each row of a matrix with an rgb sample and pre-multiply by the // weights to obtain a weighted result for sample1*, and handle the rest // of the weights more directly/verbosely: float3 sum = float3(0.0,0.0,0.0); sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr + w2adjx * sample2adjx + w3curr * sample3curr; return sum * weight_sum_inv; } /////////////////////// MAX OPTIMAL SIGMA BLUR WRAPPERS ////////////////////// // The following blurs are static wrappers around the dynamic blurs above. // HOPEFULLY, the compiler will be smart enough to do constant-folding. // Resizable separable blurs: inline float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur11resize(tex, tex_uv, dxdy, blur11_std_dev); } inline float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur9resize(tex, tex_uv, dxdy, blur9_std_dev); } inline float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur7resize(tex, tex_uv, dxdy, blur7_std_dev); } inline float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur5resize(tex, tex_uv, dxdy, blur5_std_dev); } inline float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur3resize(tex, tex_uv, dxdy, blur3_std_dev); } // Fast separable blurs: inline float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur11fast(tex, tex_uv, dxdy, blur11_std_dev); } inline float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev); } inline float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur7fast(tex, tex_uv, dxdy, blur7_std_dev); } inline float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur5fast(tex, tex_uv, dxdy, blur5_std_dev); } inline float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur3fast(tex, tex_uv, dxdy, blur3_std_dev); } // Huge, "fast" separable blurs: inline float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur43fast(tex, tex_uv, dxdy, blur43_std_dev); } inline float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur31fast(tex, tex_uv, dxdy, blur31_std_dev); } inline float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur25fast(tex, tex_uv, dxdy, blur25_std_dev); } inline float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur17fast(tex, tex_uv, dxdy, blur17_std_dev); } // Resizable one-pass blurs: inline float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur3x3resize(tex, tex_uv, dxdy, blur3_std_dev); } // "Fast" one-pass blurs: inline float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur9x9(tex, tex_uv, dxdy, blur9_std_dev); } inline float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur7x7(tex, tex_uv, dxdy, blur7_std_dev); } inline float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur5x5(tex, tex_uv, dxdy, blur5_std_dev); } inline float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur3x3(tex, tex_uv, dxdy, blur3_std_dev); } // "Fast" shared-sample one-pass blurs: inline float3 tex2Dblur12x12shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector) { return tex2Dblur12x12shared(tex, tex_uv, dxdy, quad_vector, blur12_std_dev); } inline float3 tex2Dblur10x10shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector) { return tex2Dblur10x10shared(tex, tex_uv, dxdy, quad_vector, blur10_std_dev); } inline float3 tex2Dblur8x8shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector) { return tex2Dblur8x8shared(tex, tex_uv, dxdy, quad_vector, blur8_std_dev); } inline float3 tex2Dblur6x6shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector) { return tex2Dblur6x6shared(tex, tex_uv, dxdy, quad_vector, blur6_std_dev); } #endif // BLUR_FUNCTIONS_H //////////////////////////// END BLUR-FUNCTIONS /////////////////////////// /////////////////////////////// BLOOM CONSTANTS ////////////////////////////// // Compute constants with manual inlines of the functions below: static const float bloom_diff_thresh = 1.0/256.0; /////////////////////////////////// HELPERS ////////////////////////////////// inline float get_min_sigma_to_blur_triad(const float triad_size, const float thresh) { // Requires: 1.) triad_size is the final phosphor triad size in pixels // 2.) thresh is the max desired pixel difference in the // blurred triad (e.g. 1.0/256.0). // Returns: Return the minimum sigma that will fully blur a phosphor // triad on the screen to an even color, within thresh. // This closed-form function was found by curve-fitting data. // Estimate: max error = ~0.086036, mean sq. error = ~0.0013387: return -0.05168 + 0.6113*triad_size - 1.122*triad_size*sqrt(0.000416 + thresh); // Estimate: max error = ~0.16486, mean sq. error = ~0.0041041: //return 0.5985*triad_size - triad_size*sqrt(thresh) } inline float get_absolute_scale_blur_sigma(const float thresh) { // Requires: 1.) min_expected_triads must be a global float. The number // of horizontal phosphor triads in the final image must be // >= min_allowed_viewport_triads.x for realistic results. // 2.) bloom_approx_scale_x must be a global float equal to the // absolute horizontal scale of BLOOM_APPROX. // 3.) bloom_approx_scale_x/min_allowed_viewport_triads.x // should be <= 1.1658025090 to keep the final result < // 0.62666015625 (the largest sigma ensuring the largest // unused texel weight stays < 1.0/256.0 for a 3x3 blur). // 4.) thresh is the max desired pixel difference in the // blurred triad (e.g. 1.0/256.0). // Returns: Return the minimum Gaussian sigma that will blur the pass // output as much as it would have taken to blur away // bloom_approx_scale_x horizontal phosphor triads. // Description: // BLOOM_APPROX should look like a downscaled phosphor blur. Ideally, we'd // use the same blur sigma as the actual phosphor bloom and scale it down // to the current resolution with (bloom_approx_scale_x/viewport_size_x), but // we don't know the viewport size in this pass. Instead, we'll blur as // much as it would take to blur away min_allowed_viewport_triads.x. This // will blur "more than necessary" if the user actually uses more triads, // but that's not terrible either, because blurring a constant fraction of // the viewport may better resemble a true optical bloom anyway (since the // viewport will generally be about the same fraction of each player's // field of view, regardless of screen size and resolution). // Assume an extremely large viewport size for asymptotic results. return bloom_approx_scale_x/max_viewport_size_x * get_min_sigma_to_blur_triad( max_viewport_size_x/min_allowed_viewport_triads.x, thresh); } inline float get_center_weight(const float sigma) { // Given a Gaussian blur sigma, get the blur weight for the center texel. #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA return get_fast_gaussian_weight_sum_inv(sigma); #else const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float w6 = exp(-36.0 * denom_inv); const float w7 = exp(-49.0 * denom_inv); const float w8 = exp(-64.0 * denom_inv); const float w9 = exp(-81.0 * denom_inv); const float w10 = exp(-100.0 * denom_inv); const float w11 = exp(-121.0 * denom_inv); const float w12 = exp(-144.0 * denom_inv); const float w13 = exp(-169.0 * denom_inv); const float w14 = exp(-196.0 * denom_inv); const float w15 = exp(-225.0 * denom_inv); const float w16 = exp(-256.0 * denom_inv); const float w17 = exp(-289.0 * denom_inv); const float w18 = exp(-324.0 * denom_inv); const float w19 = exp(-361.0 * denom_inv); const float w20 = exp(-400.0 * denom_inv); const float w21 = exp(-441.0 * denom_inv); // Note: If the implementation uses a smaller blur than the max allowed, // the worst case scenario is that the center weight will be overestimated, // so we'll put a bit more energy into the brightpass...no huge deal. // Then again, if the implementation uses a larger blur than the max // "allowed" because of dynamic branching, the center weight could be // underestimated, which is more of a problem...consider always using #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS // 43x blur: const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21)); #else #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS // 31x blur: const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12 + w13 + w14 + w15)); #else #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS // 25x blur: const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12)); #else #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS // 17x blur: const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8)); #else // 9x blur: const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS const float center_weight = weight_sum_inv * weight_sum_inv; return center_weight; #endif } inline float3 tex2DblurNfast(const sampler2D texture, const float2 tex_uv, const float2 dxdy, const float sigma) { // If sigma is static, we can safely branch and use the smallest blur // that's big enough. Ignore #define hints, because we'll only use a // large blur if we actually need it, and the branches cost nothing. #ifndef RUNTIME_PHOSPHOR_BLOOM_SIGMA #define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE #else // It's still worth branching if the profile supports dynamic branches: // It's much faster than using a hugely excessive blur, but each branch // eats ~1% FPS. #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES #define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE #endif #endif // Failed optimization notes: // I originally created a same-size mipmapped 5-tap separable blur10 that // could handle any sigma by reaching into lower mip levels. It was // as fast as blur25fast for runtime sigmas and a tad faster than // blur31fast for static sigmas, but mipmapping two viewport-size passes // ate 10% of FPS across all codepaths, so it wasn't worth it. #ifdef PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE if(sigma <= blur9_std_dev) { return tex2Dblur9fast(texture, tex_uv, dxdy, sigma); } else if(sigma <= blur17_std_dev) { return tex2Dblur17fast(texture, tex_uv, dxdy, sigma); } else if(sigma <= blur25_std_dev) { return tex2Dblur25fast(texture, tex_uv, dxdy, sigma); } else if(sigma <= blur31_std_dev) { return tex2Dblur31fast(texture, tex_uv, dxdy, sigma); } else { return tex2Dblur43fast(texture, tex_uv, dxdy, sigma); } #else // If we can't afford to branch, we can only guess at what blur // size we need. Therefore, use the largest blur allowed. #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS return tex2Dblur43fast(texture, tex_uv, dxdy, sigma); #else #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS return tex2Dblur31fast(texture, tex_uv, dxdy, sigma); #else #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS return tex2Dblur25fast(texture, tex_uv, dxdy, sigma); #else #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS return tex2Dblur17fast(texture, tex_uv, dxdy, sigma); #else return tex2Dblur9fast(texture, tex_uv, dxdy, sigma); #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS #endif // PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE } inline float get_bloom_approx_sigma(const float output_size_x_runtime, const float estimated_viewport_size_x) { // Requires: 1.) output_size_x_runtime == BLOOM_APPROX.output_size.x. // This is included for dynamic codepaths just in case the // following two globals are incorrect: // 2.) bloom_approx_size_x_for_skip should == the same // if PHOSPHOR_BLOOM_FAKE is #defined // 3.) bloom_approx_size_x should == the same otherwise // Returns: For gaussian4x4, return a dynamic small bloom sigma that's // as close to optimal as possible given available information. // For blur3x3, return the a static small bloom sigma that // works well for typical cases. Otherwise, we're using simple // bilinear filtering, so use static calculations. // Assume the default static value. This is a compromise that ensures // typical triads are blurred, even if unusually large ones aren't. static const float mask_num_triads_static = max(min_allowed_viewport_triads.x, mask_num_triads_desired_static); const float mask_num_triads_from_size = estimated_viewport_size_x/mask_triad_size_desired; const float mask_num_triads_runtime = max(min_allowed_viewport_triads.x, lerp(mask_num_triads_from_size, mask_num_triads_desired, mask_specify_num_triads)); // Assume an extremely large viewport size for asymptotic results: static const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0); if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize { // Use the runtime num triads and output size: const float asymptotic_triad_size = max_viewport_size_x/mask_num_triads_runtime; const float asymptotic_sigma = get_min_sigma_to_blur_triad( asymptotic_triad_size, bloom_diff_thresh); const float bloom_approx_sigma = asymptotic_sigma * output_size_x_runtime/max_viewport_size_x; // The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but // account for the Gaussian scanline sigma from the last pass too. // The bloom will be too wide horizontally but tall enough vertically. return length(float2(bloom_approx_sigma, beam_max_sigma)); } else // 3x3 blur resize (the bilinear resize doesn't need a sigma) { // We're either using blur3x3 or bilinear filtering. The biggest // reason to choose blur3x3 is to avoid dynamic weights, so use a // static calculation. #ifdef PHOSPHOR_BLOOM_FAKE static const float output_size_x_static = bloom_approx_size_x_for_fake; #else static const float output_size_x_static = bloom_approx_size_x; #endif static const float asymptotic_triad_size = max_viewport_size_x/mask_num_triads_static; const float asymptotic_sigma = get_min_sigma_to_blur_triad( asymptotic_triad_size, bloom_diff_thresh); const float bloom_approx_sigma = asymptotic_sigma * output_size_x_static/max_viewport_size_x; // The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but // try accounting for the Gaussian scanline sigma from the last pass // too; use the static default value: return length(float2(bloom_approx_sigma, beam_max_sigma_static)); } } inline float get_final_bloom_sigma(const float bloom_sigma_runtime) { // Requires: 1.) bloom_sigma_runtime is a precalculated sigma that's // optimal for the [known] triad size. // 2.) Call this from a fragment shader (not a vertex shader), // or blurring with static sigmas won't be constant-folded. // Returns: Return the optimistic static sigma if the triad size is // known at compile time. Otherwise return the optimal runtime // sigma (10% slower) or an implementation-specific compromise // between an optimistic or pessimistic static sigma. // Notes: Call this from the fragment shader, NOT the vertex shader, // so static sigmas can be constant-folded! const float bloom_sigma_optimistic = get_min_sigma_to_blur_triad( mask_triad_size_desired_static, bloom_diff_thresh); #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA return bloom_sigma_runtime; #else // Overblurring looks as bad as underblurring, so assume average-size // triads, not worst-case huge triads: return bloom_sigma_optimistic; #endif } #endif // BLOOM_FUNCTIONS_H //////////////////////////// END BLOOM-FUNCTIONS /////////////////////////// //#include "../../../../include/blur-functions.h" //////////////////////////// BEGIN BLUR-FUNCTIONS /////////////////////////// #ifndef BLUR_FUNCTIONS_H #define BLUR_FUNCTIONS_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file provides reusable one-pass and separable (two-pass) blurs. // Requires: All blurs share these requirements (dxdy requirement is split): // 1.) All requirements of gamma-management.h must be satisfied! // 2.) filter_linearN must == "true" in your .cgp preset unless // you're using tex2DblurNresize at 1x scale. // 3.) mipmap_inputN must == "true" in your .cgp preset if // output_size < video_size. // 4.) output_size == video_size / pow(2, M), where M is some // positive integer. tex2Dblur*resize can resize arbitrarily // (and the blur will be done after resizing), but arbitrary // resizes "fail" with other blurs due to the way they mix // static weights with bilinear sample exploitation. // 5.) In general, dxdy should contain the uv pixel spacing: // dxdy = (video_size/output_size)/texture_size // 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast), // zero out the dxdy component in the unblurred dimension: // dxdy = float2(dxdy.x, 0.0) or float2(0.0, dxdy.y) // Many blurs share these requirements: // 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0, // or they will blur more in the lower-scaled dimension. // 2.) One-pass shared sample blurs require ddx(), ddy(), and // tex2Dlod() to be supported by the current Cg profile, and // the drivers must support high-quality derivatives. // 3.) One-pass shared sample blurs require: // tex_uv.w == log2(video_size/output_size).y; // Non-wrapper blurs share this requirement: // 1.) sigma is the intended standard deviation of the blur // Wrapper blurs share this requirement, which is automatically // met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below): // 1.) blurN_std_dev must be global static const float values // specifying standard deviations for Nx blurs in units // of destination pixels // Optional: 1.) The including file (or an earlier included file) may // optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace // default standard deviations with those matching a binomial // distribution. (See below for details/properties.) // 2.) The including file (or an earlier included file) may // optionally #define OVERRIDE_BLUR_STD_DEVS and override: // static const float blur3_std_dev // static const float blur4_std_dev // static const float blur5_std_dev // static const float blur6_std_dev // static const float blur7_std_dev // static const float blur8_std_dev // static const float blur9_std_dev // static const float blur10_std_dev // static const float blur11_std_dev // static const float blur12_std_dev // static const float blur17_std_dev // static const float blur25_std_dev // static const float blur31_std_dev // static const float blur43_std_dev // 3.) The including file (or an earlier included file) may // optionally #define OVERRIDE_ERROR_BLURRING and override: // static const float error_blurring // This tuning value helps mitigate weighting errors from one- // pass shared-sample blurs sharing bilinear samples between // fragments. Values closer to 0.0 have "correct" blurriness // but allow more artifacts, and values closer to 1.0 blur away // artifacts by sampling closer to halfway between texels. // UPDATE 6/21/14: The above static constants may now be overridden // by non-static uniform constants. This permits exposing blur // standard deviations as runtime GUI shader parameters. However, // using them keeps weights from being statically computed, and the // speed hit depends on the blur: On my machine, uniforms kill over // 53% of the framerate with tex2Dblur12x12shared, but they only // drop the framerate by about 18% with tex2Dblur11fast. // Quality and Performance Comparisons: // For the purposes of the following discussion, "no sRGB" means // GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't. // 1.) tex2DblurNfast is always faster than tex2DblurNresize. // 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize // well, because they're the only ones that don't exploit bilinear samples. // This also means they're the only functions which can be truly gamma- // correct without linear (or sRGB FBO) input, but only at 1x scale. // 3.) One-pass shared sample blurs only have a speed advantage without sRGB. // They also have some inaccuracies due to their shared-[bilinear-]sample // design, which grow increasingly bothersome for smaller blurs and higher- // frequency source images (relative to their resolution). I had high // hopes for them, but their most realistic use case is limited to quickly // reblurring an already blurred input at full resolution. Otherwise: // a.) If you're blurring a low-resolution source, you want a better blur. // b.) If you're blurring a lower mipmap, you want a better blur. // c.) If you're blurring a high-resolution, high-frequency source, you // want a better blur. // 4.) The one-pass blurs without shared samples grow slower for larger blurs, // but they're competitive with separable blurs at 5x5 and smaller, and // even tex2Dblur7x7 isn't bad if you're wanting to conserve passes. // Here are some framerates from a GeForce 8800GTS. The first pass resizes to // viewport size (4x in this test) and linearizes for sRGB codepaths, and the // remaining passes perform 6 full blurs. Mipmapped tests are performed at the // same scale, so they just measure the cost of mipmapping each FBO (only every // other FBO is mipmapped for separable blurs, to mimic realistic usage). // Mipmap Neither sRGB+Mipmap sRGB Function // 76.0 92.3 131.3 193.7 tex2Dblur3fast // 63.2 74.4 122.4 175.5 tex2Dblur3resize // 93.7 121.2 159.3 263.2 tex2Dblur3x3 // 59.7 68.7 115.4 162.1 tex2Dblur3x3resize // 63.2 74.4 122.4 175.5 tex2Dblur5fast // 49.3 54.8 100.0 132.7 tex2Dblur5resize // 59.7 68.7 115.4 162.1 tex2Dblur5x5 // 64.9 77.2 99.1 137.2 tex2Dblur6x6shared // 55.8 63.7 110.4 151.8 tex2Dblur7fast // 39.8 43.9 83.9 105.8 tex2Dblur7resize // 40.0 44.2 83.2 104.9 tex2Dblur7x7 // 56.4 65.5 71.9 87.9 tex2Dblur8x8shared // 49.3 55.1 99.9 132.5 tex2Dblur9fast // 33.3 36.2 72.4 88.0 tex2Dblur9resize // 27.8 29.7 61.3 72.2 tex2Dblur9x9 // 37.2 41.1 52.6 60.2 tex2Dblur10x10shared // 44.4 49.5 91.3 117.8 tex2Dblur11fast // 28.8 30.8 63.6 75.4 tex2Dblur11resize // 33.6 36.5 40.9 45.5 tex2Dblur12x12shared // TODO: Fill in benchmarks for new untested blurs. // tex2Dblur17fast // tex2Dblur25fast // tex2Dblur31fast // tex2Dblur43fast // tex2Dblur3x3resize ///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// // Set static standard deviations, but allow users to override them with their // own constants (even non-static uniforms if they're okay with the speed hit): #ifndef OVERRIDE_BLUR_STD_DEVS // blurN_std_dev values are specified in terms of dxdy strides. #ifdef USE_BINOMIAL_BLUR_STD_DEVS // By request, we can define standard deviations corresponding to a // binomial distribution with p = 0.5 (related to Pascal's triangle). // This distribution works such that blurring multiple times should // have the same result as a single larger blur. These values are // larger than default for blurs up to 6x and smaller thereafter. static const float blur3_std_dev = 0.84931640625; static const float blur4_std_dev = 0.84931640625; static const float blur5_std_dev = 1.0595703125; static const float blur6_std_dev = 1.06591796875; static const float blur7_std_dev = 1.17041015625; static const float blur8_std_dev = 1.1720703125; static const float blur9_std_dev = 1.2259765625; static const float blur10_std_dev = 1.21982421875; static const float blur11_std_dev = 1.25361328125; static const float blur12_std_dev = 1.2423828125; static const float blur17_std_dev = 1.27783203125; static const float blur25_std_dev = 1.2810546875; static const float blur31_std_dev = 1.28125; static const float blur43_std_dev = 1.28125; #else // The defaults are the largest values that keep the largest unused // blur term on each side <= 1.0/256.0. (We could get away with more // or be more conservative, but this compromise is pretty reasonable.) static const float blur3_std_dev = 0.62666015625; static const float blur4_std_dev = 0.66171875; static const float blur5_std_dev = 0.9845703125; static const float blur6_std_dev = 1.02626953125; static const float blur7_std_dev = 1.36103515625; static const float blur8_std_dev = 1.4080078125; static const float blur9_std_dev = 1.7533203125; static const float blur10_std_dev = 1.80478515625; static const float blur11_std_dev = 2.15986328125; static const float blur12_std_dev = 2.215234375; static const float blur17_std_dev = 3.45535583496; static const float blur25_std_dev = 5.3409576416; static const float blur31_std_dev = 6.86488037109; static const float blur43_std_dev = 10.1852050781; #endif // USE_BINOMIAL_BLUR_STD_DEVS #endif // OVERRIDE_BLUR_STD_DEVS #ifndef OVERRIDE_ERROR_BLURRING // error_blurring should be in [0.0, 1.0]. Higher values reduce ringing // in shared-sample blurs but increase blurring and feature shifting. static const float error_blurring = 0.5; #endif ////////////////////////////////// INCLUDES ////////////////////////////////// // gamma-management.h relies on pass-specific settings to guide its behavior: // FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details. //#include "gamma-management.h" //////////////////////////// BEGIN GAMMA-MANAGEMENT ////////////////////////// #ifndef GAMMA_MANAGEMENT_H #define GAMMA_MANAGEMENT_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file provides gamma-aware tex*D*() and encode_output() functions. // Requires: Before #include-ing this file, the including file must #define // the following macros when applicable and follow their rules: // 1.) #define FIRST_PASS if this is the first pass. // 2.) #define LAST_PASS if this is the last pass. // 3.) If sRGB is available, set srgb_framebufferN = "true" for // every pass except the last in your .cgp preset. // 4.) If sRGB isn't available but you want gamma-correctness with // no banding, #define GAMMA_ENCODE_EVERY_FBO each pass. // 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7) // 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7) // 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7) // 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -) // If an option in [5, 8] is #defined in the first or last pass, it // should be #defined for both. It shouldn't make a difference // whether it's #defined for intermediate passes or not. // Optional: The including file (or an earlier included file) may optionally // #define a number of macros indicating it will override certain // macros and associated constants are as follows: // static constants with either static or uniform constants. The // 1.) OVERRIDE_STANDARD_GAMMA: The user must first define: // static const float ntsc_gamma // static const float pal_gamma // static const float crt_reference_gamma_high // static const float crt_reference_gamma_low // static const float lcd_reference_gamma // static const float crt_office_gamma // static const float lcd_office_gamma // 2.) OVERRIDE_DEVICE_GAMMA: The user must first define: // static const float crt_gamma // static const float gba_gamma // static const float lcd_gamma // 3.) OVERRIDE_FINAL_GAMMA: The user must first define: // static const float input_gamma // static const float intermediate_gamma // static const float output_gamma // (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.) // 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define: // static const bool assume_opaque_alpha // The gamma constant overrides must be used in every pass or none, // and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros. // OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis. // Usage: After setting macros appropriately, ignore gamma correction and // replace all tex*D*() calls with equivalent gamma-aware // tex*D*_linearize calls, except: // 1.) When you read an LUT, use regular tex*D or a gamma-specified // function, depending on its gamma encoding: // tex*D*_linearize_gamma (takes a runtime gamma parameter) // 2.) If you must read pass0's original input in a later pass, use // tex2D_linearize_ntsc_gamma. If you want to read pass0's // input with gamma-corrected bilinear filtering, consider // creating a first linearizing pass and reading from the input // of pass1 later. // Then, return encode_output(color) from every fragment shader. // Finally, use the global gamma_aware_bilinear boolean if you want // to statically branch based on whether bilinear filtering is // gamma-correct or not (e.g. for placing Gaussian blur samples). // // Detailed Policy: // tex*D*_linearize() functions enforce a consistent gamma-management policy // based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume // their input texture has the same encoding characteristics as the input for // the current pass (which doesn't apply to the exceptions listed above). // Similarly, encode_output() enforces a policy based on the LAST_PASS and // GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the // following two pipelines. // Typical pipeline with intermediate sRGB framebuffers: // linear_color = pow(pass0_encoded_color, input_gamma); // intermediate_output = linear_color; // Automatic sRGB encoding // linear_color = intermediate_output; // Automatic sRGB decoding // final_output = pow(intermediate_output, 1.0/output_gamma); // Typical pipeline without intermediate sRGB framebuffers: // linear_color = pow(pass0_encoded_color, input_gamma); // intermediate_output = pow(linear_color, 1.0/intermediate_gamma); // linear_color = pow(intermediate_output, intermediate_gamma); // final_output = pow(intermediate_output, 1.0/output_gamma); // Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to // easily get gamma-correctness without banding on devices where sRGB isn't // supported. // // Use This Header to Maximize Code Reuse: // The purpose of this header is to provide a consistent interface for texture // reads and output gamma-encoding that localizes and abstracts away all the // annoying details. This greatly reduces the amount of code in each shader // pass that depends on the pass number in the .cgp preset or whether sRGB // FBO's are being used: You can trivially change the gamma behavior of your // whole pass by commenting or uncommenting 1-3 #defines. To reuse the same // code in your first, Nth, and last passes, you can even put it all in another // header file and #include it from skeleton .cg files that #define the // appropriate pass-specific settings. // // Rationale for Using Three Macros: // This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like // SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes // a lower maintenance burden on each pass. At first glance it seems we could // accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT. // This works for simple use cases where input_gamma == output_gamma, but it // breaks down for more complex scenarios like CRT simulation, where the pass // number determines the gamma encoding of the input and output. /////////////////////////////// BASE CONSTANTS /////////////////////////////// // Set standard gamma constants, but allow users to override them: #ifndef OVERRIDE_STANDARD_GAMMA // Standard encoding gammas: static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? static const float pal_gamma = 2.8; // Never actually 2.8 in practice // Typical device decoding gammas (only use for emulating devices): // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard // gammas: The standards purposely undercorrected for an analog CRT's // assumed 2.5 reference display gamma to maintain contrast in assumed // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf // These unstated assumptions about display gamma and perceptual rendering // intent caused a lot of confusion, and more modern CRT's seemed to target // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit // (they struggle near black with 2.5 gamma anyway), especially PC/laptop // displays designed to view sRGB in bright environments. (Standards are // also in flux again with BT.1886, but it's underspecified for displays.) static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) static const float lcd_reference_gamma = 2.5; // To match CRT static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC static const float lcd_office_gamma = 2.2; // Approximates sRGB #endif // OVERRIDE_STANDARD_GAMMA // Assuming alpha == 1.0 might make it easier for users to avoid some bugs, // but only if they're aware of it. #ifndef OVERRIDE_ALPHA_ASSUMPTIONS static const bool assume_opaque_alpha = false; #endif /////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// // gamma-management.h should be compatible with overriding gamma values with // runtime user parameters, but we can only define other global constants in // terms of static constants, not uniform user parameters. To get around this // limitation, we need to define derived constants using functions. // Set device gamma constants, but allow users to override them: #ifdef OVERRIDE_DEVICE_GAMMA // The user promises to globally define the appropriate constants: inline float get_crt_gamma() { return crt_gamma; } inline float get_gba_gamma() { return gba_gamma; } inline float get_lcd_gamma() { return lcd_gamma; } #else inline float get_crt_gamma() { return crt_reference_gamma_high; } inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) inline float get_lcd_gamma() { return lcd_office_gamma; } #endif // OVERRIDE_DEVICE_GAMMA // Set decoding/encoding gammas for the first/lass passes, but allow overrides: #ifdef OVERRIDE_FINAL_GAMMA // The user promises to globally define the appropriate constants: inline float get_intermediate_gamma() { return intermediate_gamma; } inline float get_input_gamma() { return input_gamma; } inline float get_output_gamma() { return output_gamma; } #else // If we gamma-correct every pass, always use ntsc_gamma between passes to // ensure middle passes don't need to care if anything is being simulated: inline float get_intermediate_gamma() { return ntsc_gamma; } #ifdef SIMULATE_CRT_ON_LCD inline float get_input_gamma() { return get_crt_gamma(); } inline float get_output_gamma() { return get_lcd_gamma(); } #else #ifdef SIMULATE_GBA_ON_LCD inline float get_input_gamma() { return get_gba_gamma(); } inline float get_output_gamma() { return get_lcd_gamma(); } #else #ifdef SIMULATE_LCD_ON_CRT inline float get_input_gamma() { return get_lcd_gamma(); } inline float get_output_gamma() { return get_crt_gamma(); } #else #ifdef SIMULATE_GBA_ON_CRT inline float get_input_gamma() { return get_gba_gamma(); } inline float get_output_gamma() { return get_crt_gamma(); } #else // Don't simulate anything: inline float get_input_gamma() { return ntsc_gamma; } inline float get_output_gamma() { return ntsc_gamma; } #endif // SIMULATE_GBA_ON_CRT #endif // SIMULATE_LCD_ON_CRT #endif // SIMULATE_GBA_ON_LCD #endif // SIMULATE_CRT_ON_LCD #endif // OVERRIDE_FINAL_GAMMA // Set decoding/encoding gammas for the current pass. Use static constants for // linearize_input and gamma_encode_output, because they aren't derived, and // they let the compiler do dead-code elimination. #ifndef GAMMA_ENCODE_EVERY_FBO #ifdef FIRST_PASS static const bool linearize_input = true; inline float get_pass_input_gamma() { return get_input_gamma(); } #else static const bool linearize_input = false; inline float get_pass_input_gamma() { return 1.0; } #endif #ifdef LAST_PASS static const bool gamma_encode_output = true; inline float get_pass_output_gamma() { return get_output_gamma(); } #else static const bool gamma_encode_output = false; inline float get_pass_output_gamma() { return 1.0; } #endif #else static const bool linearize_input = true; static const bool gamma_encode_output = true; #ifdef FIRST_PASS inline float get_pass_input_gamma() { return get_input_gamma(); } #else inline float get_pass_input_gamma() { return get_intermediate_gamma(); } #endif #ifdef LAST_PASS inline float get_pass_output_gamma() { return get_output_gamma(); } #else inline float get_pass_output_gamma() { return get_intermediate_gamma(); } #endif #endif // Users might want to know if bilinear filtering will be gamma-correct: static const bool gamma_aware_bilinear = !linearize_input; ////////////////////// COLOR ENCODING/DECODING FUNCTIONS ///////////////////// inline float4 encode_output(const float4 color) { if(gamma_encode_output) { if(assume_opaque_alpha) { return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0); } else { return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a); } } else { return color; } } inline float4 decode_input(const float4 color) { if(linearize_input) { if(assume_opaque_alpha) { return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0); } else { return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a); } } else { return color; } } inline float4 decode_gamma_input(const float4 color, const float3 gamma) { if(assume_opaque_alpha) { return float4(pow(color.rgb, gamma), 1.0); } else { return float4(pow(color.rgb, gamma), color.a); } } //TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯ //#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D))) // EDIT: it's the 'const' in front of the coords that's doing it /////////////////////////// TEXTURE LOOKUP WRAPPERS ////////////////////////// // "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: // Provide a wide array of linearizing texture lookup wrapper functions. The // Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D // lookups are provided for completeness in case that changes someday. Nobody // is likely to use the *fetch and *proj functions, but they're included just // in case. The only tex*D texture sampling functions omitted are: // - tex*Dcmpbias // - tex*Dcmplod // - tex*DARRAY* // - tex*DMS* // - Variants returning integers // Standard line length restrictions are ignored below for vertical brevity. /* // tex1D: inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords) { return decode_input(tex1D(tex, tex_coords)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords) { return decode_input(tex1D(tex, tex_coords)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off) { return decode_input(tex1D(tex, tex_coords, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) { return decode_input(tex1D(tex, tex_coords, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy) { return decode_input(tex1D(tex, tex_coords, dx, dy)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy) { return decode_input(tex1D(tex, tex_coords, dx, dy)); } inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off) { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off) { return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } // tex1Dbias: inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords) { return decode_input(tex1Dbias(tex, tex_coords)); } inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex1Dbias(tex, tex_coords, texel_off)); } // tex1Dfetch: inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords) { return decode_input(tex1Dfetch(tex, tex_coords)); } inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off) { return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); } // tex1Dlod: inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords) { return decode_input(tex1Dlod(tex, tex_coords)); } inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex1Dlod(tex, tex_coords, texel_off)); } // tex1Dproj: inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords) { return decode_input(tex1Dproj(tex, tex_coords)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords) { return decode_input(tex1Dproj(tex, tex_coords)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } */ // tex2D: inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords) { return decode_input(COMPAT_TEXTURE(tex, tex_coords)); } inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords) { return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); } inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords, texel_off)); } inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } //inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } //inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off) //{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } // tex2Dbias: //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords) //{ return decode_input(tex2Dbias(tex, tex_coords)); } //inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) //{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); } // tex2Dfetch: //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords) //{ return decode_input(tex2Dfetch(tex, tex_coords)); } //inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off) //{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); } // tex2Dlod: inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords) { return decode_input(textureLod(tex, tex_coords.xy, 0.0)); } inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off) { return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } /* // tex2Dproj: inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords) { return decode_input(tex2Dproj(tex, tex_coords)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords) { return decode_input(tex2Dproj(tex, tex_coords)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } */ /* // tex3D: inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords) { return decode_input(tex3D(tex, tex_coords)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off) { return decode_input(tex3D(tex, tex_coords, texel_off)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy) { return decode_input(tex3D(tex, tex_coords, dx, dy)); } inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off) { return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); } // tex3Dbias: inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dbias(tex, tex_coords)); } inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dbias(tex, tex_coords, texel_off)); } // tex3Dfetch: inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords) { return decode_input(tex3Dfetch(tex, tex_coords)); } inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off) { return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); } // tex3Dlod: inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dlod(tex, tex_coords)); } inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dlod(tex, tex_coords, texel_off)); } // tex3Dproj: inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords) { return decode_input(tex3Dproj(tex, tex_coords)); } inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) { return decode_input(tex3Dproj(tex, tex_coords, texel_off)); } /////////* // NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: // This narrow selection of nonstandard tex2D* functions can be useful: // tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0. //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords) //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); } //inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off) //{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); } // MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS: // Provide a narrower selection of tex2D* wrapper functions that decode an // input sample with a specified gamma value. These are useful for reading // LUT's and for reading the input of pass0 in a later pass. // tex2D: inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma) { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); } inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma) { return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } //inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) //{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } /* // tex2Dbias: inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma) { return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); } inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma) { return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); } // tex2Dfetch: inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma) { return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); } inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma) { return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); } */ // tex2Dlod: inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma) { return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); } inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma) { return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); } #endif // GAMMA_MANAGEMENT_H //////////////////////////// END GAMMA-MANAGEMENT ////////////////////////// //#include "quad-pixel-communication.h" /////////////////////// BEGIN QUAD-PIXEL-COMMUNICATION ////////////////////// #ifndef QUAD_PIXEL_COMMUNICATION_H #define QUAD_PIXEL_COMMUNICATION_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey* // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DISCLAIMER ///////////////////////////////// // *This code was inspired by "Shader Amortization using Pixel Quad Message // Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent // is not to plagiarize his fundamentally similar code and assert my own // copyright, but the algorithmic helper functions require so little code that // implementations can't vary by much except bugfixes and conventions. I just // wanted to license my own particular code here to avoid ambiguity and make it // clear that as far as I'm concerned, people can do as they please with it. ///////////////////////////////// DESCRIPTION //////////////////////////////// // Given screen pixel numbers, derive a "quad vector" describing a fragment's // position in its 2x2 pixel quad. Given that vector, obtain the values of any // variable at neighboring fragments. // Requires: Using this file in general requires: // 1.) ddx() and ddy() are present in the current Cg profile. // 2.) The GPU driver is using fine/high-quality derivatives. // Functions will give incorrect results if this is not true, // so a test function is included. ///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES //////////////////// float4 get_quad_vector_naive(float4 output_pixel_num_wrt_uvxy) { // Requires: Two measures of the current fragment's output pixel number // in the range ([0, output_size.x), [0, output_size.y)): // 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords. // 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy. // Returns: Two measures of the fragment's position in its 2x2 quad: // 1.) The .xy components are its 2x2 placement with respect to // uv direction (the origin (0, 0) is at the top-left): // top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0) // bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0) // You need this to arrange/weight shared texture samples. // 2.) The .zw components are its 2x2 placement with respect to // screen xy direction (position); the origin varies. // quad_gather needs this measure to work correctly. // Note: quad_vector.zw = quad_vector.xy * float2( // ddx(output_pixel_num_wrt_uvxy.x), // ddy(output_pixel_num_wrt_uvxy.y)); // Caveats: This function assumes the GPU driver always starts 2x2 pixel // quads at even pixel numbers. This assumption can be wrong // for odd output resolutions (nondeterministically so). float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0; float4 quad_vector = pixel_odd * 2.0 - float4(1.0); return quad_vector; } float4 get_quad_vector(float4 output_pixel_num_wrt_uvxy) { // Requires: Same as get_quad_vector_naive() (see that first). // Returns: Same as get_quad_vector_naive() (see that first), but it's // correct even if the 2x2 pixel quad starts at an odd pixel, // which can occur at odd resolutions. float4 quad_vector_guess = get_quad_vector_naive(output_pixel_num_wrt_uvxy); // If quad_vector_guess.zw doesn't increase with screen xy, we know // the 2x2 pixel quad starts at an odd pixel: float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z), ddy(quad_vector_guess.w)); return quad_vector_guess * odd_start_mirror.xyxy; } float4 get_quad_vector(float2 output_pixel_num_wrt_uv) { // Requires: 1.) ddx() and ddy() are present in the current Cg profile. // 2.) output_pixel_num_wrt_uv must increase with uv coords and // measure the current fragment's output pixel number in: // ([0, output_size.x), [0, output_size.y)) // Returns: Same as get_quad_vector_naive() (see that first), but it's // correct even if the 2x2 pixel quad starts at an odd pixel, // which can occur at odd resolutions. // Caveats: This function requires less information than the version // taking a float4, but it's potentially slower. // Do screen coords increase with or against uv? Get the direction // with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}. float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x), ddy(output_pixel_num_wrt_uv.y)); float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0; float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - float2(0.5)) * 2.0; float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror; // If quad_vector_screen_guess doesn't increase with screen xy, we know // the 2x2 pixel quad starts at an odd pixel: float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x), ddy(quad_vector_screen_guess.y)); float4 quad_vector_guess = float4( quad_vector_uv_guess, quad_vector_screen_guess); return quad_vector_guess * odd_start_mirror.xyxy; } void quad_gather(float4 quad_vector, float4 curr, out float4 adjx, out float4 adjy, out float4 diag) { // Requires: 1.) ddx() and ddy() are present in the current Cg profile. // 2.) The GPU driver is using fine/high-quality derivatives. // 3.) quad_vector describes the current fragment's location in // its 2x2 pixel quad using get_quad_vector()'s conventions. // 4.) curr is any vector you wish to get neighboring values of. // Returns: Values of an input vector (curr) at neighboring fragments // adjacent x, adjacent y, and diagonal (via out parameters). adjx = curr - ddx(curr) * quad_vector.z; adjy = curr - ddy(curr) * quad_vector.w; diag = adjx - ddy(adjx) * quad_vector.w; } void quad_gather(float4 quad_vector, float3 curr, out float3 adjx, out float3 adjy, out float3 diag) { // Float3 version adjx = curr - ddx(curr) * quad_vector.z; adjy = curr - ddy(curr) * quad_vector.w; diag = adjx - ddy(adjx) * quad_vector.w; } void quad_gather(float4 quad_vector, float2 curr, out float2 adjx, out float2 adjy, out float2 diag) { // Float2 version adjx = curr - ddx(curr) * quad_vector.z; adjy = curr - ddy(curr) * quad_vector.w; diag = adjx - ddy(adjx) * quad_vector.w; } float4 quad_gather(float4 quad_vector, float curr) { // Float version: // Returns: return.x == current // return.y == adjacent x // return.z == adjacent y // return.w == diagonal float4 all = float4(curr); all.y = all.x - ddx(all.x) * quad_vector.z; all.zw = all.xy - ddy(all.xy) * quad_vector.w; return all; } float4 quad_gather_sum(float4 quad_vector, float4 curr) { // Requires: Same as quad_gather() // Returns: Sum of an input vector (curr) at all fragments in a quad. float4 adjx, adjy, diag; quad_gather(quad_vector, curr, adjx, adjy, diag); return (curr + adjx + adjy + diag); } float3 quad_gather_sum(float4 quad_vector, float3 curr) { // Float3 version: float3 adjx, adjy, diag; quad_gather(quad_vector, curr, adjx, adjy, diag); return (curr + adjx + adjy + diag); } float2 quad_gather_sum(float4 quad_vector, float2 curr) { // Float2 version: float2 adjx, adjy, diag; quad_gather(quad_vector, curr, adjx, adjy, diag); return (curr + adjx + adjy + diag); } float quad_gather_sum(float4 quad_vector, float curr) { // Float version: float4 all_values = quad_gather(quad_vector, curr); return (all_values.x + all_values.y + all_values.z + all_values.w); } bool fine_derivatives_working(float4 quad_vector, float4 curr) { // Requires: 1.) ddx() and ddy() are present in the current Cg profile. // 2.) quad_vector describes the current fragment's location in // its 2x2 pixel quad using get_quad_vector()'s conventions. // 3.) curr must be a test vector with non-constant derivatives // (its value should change nonlinearly across fragments). // Returns: true if fine/hybrid/high-quality derivatives are used, or // false if coarse derivatives are used or inconclusive // Usage: Test whether quad-pixel communication is working! // Method: We can confirm fine derivatives are used if the following // holds (ever, for any value at any fragment): // (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy)) // The more values we test (e.g. test a float4 two ways), the // easier it is to demonstrate fine derivatives are working. // TODO: Check for floating point exact comparison issues! float4 ddx_curr = ddx(curr); float4 ddy_curr = ddy(curr); float4 adjx = curr - ddx_curr * quad_vector.z; float4 adjy = curr - ddy_curr * quad_vector.w; bool ddy_different = any(bool4(ddy_curr.x != ddy(adjx).x, ddy_curr.y != ddy(adjx).y, ddy_curr.z != ddy(adjx).z, ddy_curr.w != ddy(adjx).w)); bool ddx_different = any(bool4(ddx_curr.x != ddx(adjy).x, ddx_curr.y != ddx(adjy).y, ddx_curr.z != ddx(adjy).z, ddx_curr.w != ddx(adjy).w)); return any(bool2(ddy_different, ddx_different)); } bool fine_derivatives_working_fast(float4 quad_vector, float curr) { // Requires: Same as fine_derivatives_working() // Returns: Same as fine_derivatives_working() // Usage: This is faster than fine_derivatives_working() but more // likely to return false negatives, so it's less useful for // offline testing/debugging. It's also useless as the basis // for dynamic runtime branching as of May 2014: Derivatives // (and quad-pixel communication) are currently disallowed in // branches. However, future GPU's may allow you to use them // in dynamic branches if you promise the branch condition // evaluates the same for every fragment in the quad (and/or if // the driver enforces that promise by making a single fragment // control branch decisions). If that ever happens, this // version may become a more economical choice. float ddx_curr = ddx(curr); float ddy_curr = ddy(curr); float adjx = curr - ddx_curr * quad_vector.z; return (ddy_curr != ddy(adjx)); } #endif // QUAD_PIXEL_COMMUNICATION_H //////////////////////// END QUAD-PIXEL-COMMUNICATION /////////////////////// //#include "special-functions.h" /////////////////////////// BEGIN SPECIAL-FUNCTIONS ////////////////////////// #ifndef SPECIAL_FUNCTIONS_H #define SPECIAL_FUNCTIONS_H ///////////////////////////////// MIT LICENSE //////////////////////////////// // Copyright (C) 2014 TroggleMonkey // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file implements the following mathematical special functions: // 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2)) // 2.) gamma(s), a real-numbered extension of the integer factorial function // It also implements normalized_ligamma(s, z), a normalized lower incomplete // gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can // be called with an _impl suffix to use an implementation version with a few // extra precomputed parameters (which may be useful for the caller to reuse). // See below for details. // // Design Rationale: // Pretty much every line of code in this file is duplicated four times for // different input types (float4/float3/float2/float). This is unfortunate, // but Cg doesn't allow function templates. Macros would be far less verbose, // but they would make the code harder to document and read. I don't expect // these functions will require a whole lot of maintenance changes unless // someone ever has need for more robust incomplete gamma functions, so code // duplication seems to be the lesser evil in this case. /////////////////////////// GAUSSIAN ERROR FUNCTION ////////////////////////// float4 erf6(float4 x) { // Requires: x is the standard parameter to erf(). // Returns: Return an Abramowitz/Stegun approximation of erf(), where: // erf(x) = 2/sqrt(pi) * integral(e**(-x**2)) // This approximation has a max absolute error of 2.5*10**-5 // with solid numerical robustness and efficiency. See: // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions static const float4 one = float4(1.0); const float4 sign_x = sign(x); const float4 t = one/(one + 0.47047*abs(x)); const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float3 erf6(const float3 x) { // Float3 version: static const float3 one = float3(1.0); const float3 sign_x = sign(x); const float3 t = one/(one + 0.47047*abs(x)); const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float2 erf6(const float2 x) { // Float2 version: static const float2 one = float2(1.0); const float2 sign_x = sign(x); const float2 t = one/(one + 0.47047*abs(x)); const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float erf6(const float x) { // Float version: const float sign_x = sign(x); const float t = 1.0/(1.0 + 0.47047*abs(x)); const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* exp(-(x*x)); return result * sign_x; } float4 erft(const float4 x) { // Requires: x is the standard parameter to erf(). // Returns: Approximate erf() with the hyperbolic tangent. The error is // visually noticeable, but it's blazing fast and perceptually // close...at least on ATI hardware. See: // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html // Warning: Only use this if your hardware drivers correctly implement // tanh(): My nVidia 8800GTS returns garbage output. return tanh(1.202760580 * x); } float3 erft(const float3 x) { // Float3 version: return tanh(1.202760580 * x); } float2 erft(const float2 x) { // Float2 version: return tanh(1.202760580 * x); } float erft(const float x) { // Float version: return tanh(1.202760580 * x); } inline float4 erf(const float4 x) { // Requires: x is the standard parameter to erf(). // Returns: Some approximation of erf(x), depending on user settings. #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } inline float3 erf(const float3 x) { // Float3 version: #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } inline float2 erf(const float2 x) { // Float2 version: #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } inline float erf(const float x) { // Float version: #ifdef ERF_FAST_APPROXIMATION return erft(x); #else return erf6(x); #endif } /////////////////////////// COMPLETE GAMMA FUNCTION ////////////////////////// float4 gamma_impl(const float4 s, const float4 s_inv) { // Requires: 1.) s is the standard parameter to the gamma function, and // it should lie in the [0, 36] range. // 2.) s_inv = 1.0/s. This implementation function requires // the caller to precompute this value, giving users the // opportunity to reuse it. // Returns: Return approximate gamma function (real-numbered factorial) // output using the Lanczos approximation with two coefficients // calculated using Paul Godfrey's method here: // http://my.fit.edu/~gabdo/gamma.txt // An optimal g value for s in [0, 36] is ~1.12906830989, with // a maximum relative error of 0.000463 for 2**16 equally // evals. We could use three coeffs (0.0000346 error) without // hurting latency, but this allows more parallelism with // outside instructions. static const float4 g = float4(1.12906830989); static const float4 c0 = float4(0.8109119309638332633713423362694399653724431); static const float4 c1 = float4(0.4808354605142681877121661197951496120000040); static const float4 e = float4(2.71828182845904523536028747135266249775724709); const float4 sph = s + float4(0.5); const float4 lanczos_sum = c0 + c1/(s + float4(1.0)); const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s). // This has less error for small s's than (s -= 1.0) at the beginning. return (pow(base, sph) * lanczos_sum) * s_inv; } float3 gamma_impl(const float3 s, const float3 s_inv) { // Float3 version: static const float3 g = float3(1.12906830989); static const float3 c0 = float3(0.8109119309638332633713423362694399653724431); static const float3 c1 = float3(0.4808354605142681877121661197951496120000040); static const float3 e = float3(2.71828182845904523536028747135266249775724709); const float3 sph = s + float3(0.5); const float3 lanczos_sum = c0 + c1/(s + float3(1.0)); const float3 base = (sph + g)/e; return (pow(base, sph) * lanczos_sum) * s_inv; } float2 gamma_impl(const float2 s, const float2 s_inv) { // Float2 version: static const float2 g = float2(1.12906830989); static const float2 c0 = float2(0.8109119309638332633713423362694399653724431); static const float2 c1 = float2(0.4808354605142681877121661197951496120000040); static const float2 e = float2(2.71828182845904523536028747135266249775724709); const float2 sph = s + float2(0.5); const float2 lanczos_sum = c0 + c1/(s + float2(1.0)); const float2 base = (sph + g)/e; return (pow(base, sph) * lanczos_sum) * s_inv; } float gamma_impl(const float s, const float s_inv) { // Float version: static const float g = 1.12906830989; static const float c0 = 0.8109119309638332633713423362694399653724431; static const float c1 = 0.4808354605142681877121661197951496120000040; static const float e = 2.71828182845904523536028747135266249775724709; const float sph = s + 0.5; const float lanczos_sum = c0 + c1/(s + 1.0); const float base = (sph + g)/e; return (pow(base, sph) * lanczos_sum) * s_inv; } float4 gamma(const float4 s) { // Requires: s is the standard parameter to the gamma function, and it // should lie in the [0, 36] range. // Returns: Return approximate gamma function output with a maximum // relative error of 0.000463. See gamma_impl for details. return gamma_impl(s, float4(1.0)/s); } float3 gamma(const float3 s) { // Float3 version: return gamma_impl(s, float3(1.0)/s); } float2 gamma(const float2 s) { // Float2 version: return gamma_impl(s, float2(1.0)/s); } float gamma(const float s) { // Float version: return gamma_impl(s, 1.0/s); } //////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) /////////////// // Lower incomplete gamma function for small s and z (implementation): float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv) { // Requires: 1.) s < ~0.5 // 2.) z <= ~0.775075 // 3.) s_inv = 1.0/s (precomputed for outside reuse) // Returns: A series representation for the lower incomplete gamma // function for small s and small z (4 terms). // The actual "rolled up" summation looks like: // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0; // sum = last_sign * last_pow / ((s + k) * last_factorial) // for(int i = 0; i < 4; ++i) // { // last_sign *= -1.0; last_pow *= z; last_factorial *= i; // sum += last_sign * last_pow / ((s + k) * last_factorial); // } // Unrolled, constant-unfolded and arranged for madds and parallelism: const float4 scale = pow(z, s); float4 sum = s_inv; // Summation iteration 0 result // Summation iterations 1, 2, and 3: const float4 z_sq = z*z; const float4 denom1 = s + float4(1.0); const float4 denom2 = 2.0*s + float4(4.0); const float4 denom3 = 6.0*s + float4(18.0); //float4 denom4 = 24.0*s + float4(96.0); sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; //sum += z_sq * z_sq / denom4; // Scale and return: return scale * sum; } float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv) { // Float3 version: const float3 scale = pow(z, s); float3 sum = s_inv; const float3 z_sq = z*z; const float3 denom1 = s + float3(1.0); const float3 denom2 = 2.0*s + float3(4.0); const float3 denom3 = 6.0*s + float3(18.0); sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; return scale * sum; } float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv) { // Float2 version: const float2 scale = pow(z, s); float2 sum = s_inv; const float2 z_sq = z*z; const float2 denom1 = s + float2(1.0); const float2 denom2 = 2.0*s + float2(4.0); const float2 denom3 = 6.0*s + float2(18.0); sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; return scale * sum; } float ligamma_small_z_impl(const float s, const float z, const float s_inv) { // Float version: const float scale = pow(z, s); float sum = s_inv; const float z_sq = z*z; const float denom1 = s + 1.0; const float denom2 = 2.0*s + 4.0; const float denom3 = 6.0*s + 18.0; sum -= z/denom1; sum += z_sq/denom2; sum -= z * z_sq/denom3; return scale * sum; } // Upper incomplete gamma function for small s and large z (implementation): float4 uigamma_large_z_impl(const float4 s, const float4 z) { // Requires: 1.) s < ~0.5 // 2.) z > ~0.775075 // Returns: Gauss's continued fraction representation for the upper // incomplete gamma function (4 terms). // The "rolled up" continued fraction looks like this. The denominator // is truncated, and it's calculated "from the bottom up:" // denom = float4('inf'); // float4 one = float4(1.0); // for(int i = 4; i > 0; --i) // { // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom; // } // Unrolled and constant-unfolded for madds and parallelism: const float4 numerator = pow(z, s) * exp(-z); float4 denom = float4(7.0) + z - s; denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom; denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom; denom = float4(1.0) + z - s + (s - float4(1.0))/denom; return numerator / denom; } float3 uigamma_large_z_impl(const float3 s, const float3 z) { // Float3 version: const float3 numerator = pow(z, s) * exp(-z); float3 denom = float3(7.0) + z - s; denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom; denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom; denom = float3(1.0) + z - s + (s - float3(1.0))/denom; return numerator / denom; } float2 uigamma_large_z_impl(const float2 s, const float2 z) { // Float2 version: const float2 numerator = pow(z, s) * exp(-z); float2 denom = float2(7.0) + z - s; denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom; denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom; denom = float2(1.0) + z - s + (s - float2(1.0))/denom; return numerator / denom; } float uigamma_large_z_impl(const float s, const float z) { // Float version: const float numerator = pow(z, s) * exp(-z); float denom = 7.0 + z - s; denom = 5.0 + z - s + (3.0*s - 9.0)/denom; denom = 3.0 + z - s + (2.0*s - 4.0)/denom; denom = 1.0 + z - s + (s - 1.0)/denom; return numerator / denom; } // Normalized lower incomplete gamma function for small s (implementation): float4 normalized_ligamma_impl(const float4 s, const float4 z, const float4 s_inv, const float4 gamma_s_inv) { // Requires: 1.) s < ~0.5 // 2.) s_inv = 1/s (precomputed for outside reuse) // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse) // Returns: Approximate the normalized lower incomplete gamma function // for s < 0.5. Since we only care about s < 0.5, we only need // to evaluate two branches (not four) based on z. Each branch // uses four terms, with a max relative error of ~0.00182. The // branch threshold and specifics were adapted for fewer terms // from Gil/Segura/Temme's paper here: // http://oai.cwi.nl/oai/asset/20433/20433B.pdf // Evaluate both branches: Real branches test slower even when available. static const float4 thresh = float4(0.775075); bool4 z_is_large; z_is_large.x = z.x > thresh.x; z_is_large.y = z.y > thresh.y; z_is_large.z = z.z > thresh.z; z_is_large.w = z.w > thresh.w; const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; // Combine the results from both branches: bool4 inverse_z_is_large = not(z_is_large); return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large); } float3 normalized_ligamma_impl(const float3 s, const float3 z, const float3 s_inv, const float3 gamma_s_inv) { // Float3 version: static const float3 thresh = float3(0.775075); bool3 z_is_large; z_is_large.x = z.x > thresh.x; z_is_large.y = z.y > thresh.y; z_is_large.z = z.z > thresh.z; const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; bool3 inverse_z_is_large = not(z_is_large); return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large); } float2 normalized_ligamma_impl(const float2 s, const float2 z, const float2 s_inv, const float2 gamma_s_inv) { // Float2 version: static const float2 thresh = float2(0.775075); bool2 z_is_large; z_is_large.x = z.x > thresh.x; z_is_large.y = z.y > thresh.y; const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; bool2 inverse_z_is_large = not(z_is_large); return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large); } float normalized_ligamma_impl(const float s, const float z, const float s_inv, const float gamma_s_inv) { // Float version: static const float thresh = 0.775075; const bool z_is_large = z > thresh; const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv; const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; return large_z * float(z_is_large) + small_z * float(!z_is_large); } // Normalized lower incomplete gamma function for small s: float4 normalized_ligamma(const float4 s, const float4 z) { // Requires: s < ~0.5 // Returns: Approximate the normalized lower incomplete gamma function // for s < 0.5. See normalized_ligamma_impl() for details. const float4 s_inv = float4(1.0)/s; const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } float3 normalized_ligamma(const float3 s, const float3 z) { // Float3 version: const float3 s_inv = float3(1.0)/s; const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } float2 normalized_ligamma(const float2 s, const float2 z) { // Float2 version: const float2 s_inv = float2(1.0)/s; const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } float normalized_ligamma(const float s, const float z) { // Float version: const float s_inv = 1.0/s; const float gamma_s_inv = 1.0/gamma_impl(s, s_inv); return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); } #endif // SPECIAL_FUNCTIONS_H //////////////////////////// END SPECIAL-FUNCTIONS /////////////////////////// //////////////////////////////// END INCLUDES //////////////////////////////// /////////////////////////////////// HELPERS ////////////////////////////////// inline float4 uv2_to_uv4(float2 tex_uv) { // Make a float2 uv offset safe for adding to float4 tex2Dlod coords: return float4(tex_uv, 0.0, 0.0); } // Make a length squared helper macro (for usage with static constants): #define LENGTH_SQ(vec) (dot(vec, vec)) inline float get_fast_gaussian_weight_sum_inv(const float sigma) { // We can use the Gaussian integral to calculate the asymptotic weight for // the center pixel. Since the unnormalized center pixel weight is 1.0, // the normalized weight is the same as the weight sum inverse. Given a // large enough blur (9+), the asymptotic weight sum is close and faster: // center_weight = 0.5 * // (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0)))) // erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)): // However, we can get even faster results with curve-fitting. These are // also closer than the asymptotic results, because they were constructed // from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from // (0, blurN_std_dev), so the results for smaller sigmas are biased toward // smaller blurs. The max error is 0.0031793913. // Relative FPS: 134.3 with erf, 135.8 with curve-fitting. //static const float temp = 0.5/sqrt(2.0); //return erf(temp/sigma); return min(exp(exp(0.348348412457428/ (sigma - 0.0860587260734721))), 0.399334576340352/sigma); } //////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS /////////////////// float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur. // It may be mipmapped depending on settings and dxdy. // Calculate Gaussian blur kernel weights and a normalization factor for // distances of 0-4, ignoring constant factors (since we're normalizing). const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5)); // Statically normalize weights, sum weighted samples, and return. Blurs are // currently optimized for dynamic weights. float3 sum = float3(0.0,0.0,0.0); sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy).rgb; sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb; sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb; sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb; sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur. // It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb; sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb; sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur. // It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3)); // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb; sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb; sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur. // It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2)); // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb; sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur. // It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1); // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb; return sum * weight_sum_inv; } /////////////////////////// FAST SEPARABLE BLURS /////////////////////////// float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: 1.) Global requirements must be met (see file description). // 2.) filter_linearN must = "true" in your .cgp file. // 3.) For gamma-correct bilinear filtering, global // gamma_aware_bilinear == true (from gamma-management.h) // Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5)); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w01 = w0 * 0.5 + w1; const float w23 = w2 + w3; const float w45 = w4 + w5; const float w01_ratio = w1/w01; const float w23_ratio = w3/w23; const float w45_ratio = w5/w45; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy).rgb; sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb; sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb; sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb; sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb; sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest // neighbor and 4 linear taps. It may be mipmapped depending // on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); // Calculate combined weights and linear sample ratios between texel pairs. const float w12 = w1 + w2; const float w34 = w3 + w4; const float w12_ratio = w2/w12; const float w34_ratio = w4/w34; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy).rgb; sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb; sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3)); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w01 = w0 * 0.5 + w1; const float w23 = w2 + w3; const float w01_ratio = w1/w01; const float w23_ratio = w3/w23; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb; sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb; sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb; sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest // neighbor and 2 linear taps. It may be mipmapped depending // on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2)); // Calculate combined weights and linear sample ratios between texel pairs. const float w12 = w1 + w2; const float w12_ratio = w2/w12; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w01 = w0 * 0.5 + w1; const float w01_ratio = w1/w01; // Weights for all samples are the same, so just average them: return 0.5 * ( tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb + tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb); } //////////////////////////// HUGE SEPARABLE BLURS //////////////////////////// // Huge separable blurs come only in "fast" versions. float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float w6 = exp(-36.0 * denom_inv); const float w7 = exp(-49.0 * denom_inv); const float w8 = exp(-64.0 * denom_inv); const float w9 = exp(-81.0 * denom_inv); const float w10 = exp(-100.0 * denom_inv); const float w11 = exp(-121.0 * denom_inv); const float w12 = exp(-144.0 * denom_inv); const float w13 = exp(-169.0 * denom_inv); const float w14 = exp(-196.0 * denom_inv); const float w15 = exp(-225.0 * denom_inv); const float w16 = exp(-256.0 * denom_inv); const float w17 = exp(-289.0 * denom_inv); const float w18 = exp(-324.0 * denom_inv); const float w19 = exp(-361.0 * denom_inv); const float w20 = exp(-400.0 * denom_inv); const float w21 = exp(-441.0 * denom_inv); //const float weight_sum_inv = 1.0 / // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + // w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21)); const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w0_1 = w0 * 0.5 + w1; const float w2_3 = w2 + w3; const float w4_5 = w4 + w5; const float w6_7 = w6 + w7; const float w8_9 = w8 + w9; const float w10_11 = w10 + w11; const float w12_13 = w12 + w13; const float w14_15 = w14 + w15; const float w16_17 = w16 + w17; const float w18_19 = w18 + w19; const float w20_21 = w20 + w21; const float w0_1_ratio = w1/w0_1; const float w2_3_ratio = w3/w2_3; const float w4_5_ratio = w5/w4_5; const float w6_7_ratio = w7/w6_7; const float w8_9_ratio = w9/w8_9; const float w10_11_ratio = w11/w10_11; const float w12_13_ratio = w13/w12_13; const float w14_15_ratio = w15/w14_15; const float w16_17_ratio = w17/w16_17; const float w18_19_ratio = w19/w18_19; const float w20_21_ratio = w21/w20_21; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb; sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb; sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb; sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb; sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb; sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb; sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb; sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb; sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb; sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb; sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb; sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb; sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb; sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb; sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb; sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb; sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb; sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb; sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb; sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb; sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb; sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear // taps. It may be mipmapped depending on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float w6 = exp(-36.0 * denom_inv); const float w7 = exp(-49.0 * denom_inv); const float w8 = exp(-64.0 * denom_inv); const float w9 = exp(-81.0 * denom_inv); const float w10 = exp(-100.0 * denom_inv); const float w11 = exp(-121.0 * denom_inv); const float w12 = exp(-144.0 * denom_inv); const float w13 = exp(-169.0 * denom_inv); const float w14 = exp(-196.0 * denom_inv); const float w15 = exp(-225.0 * denom_inv); //const float weight_sum_inv = 1.0 / // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + // w9 + w10 + w11 + w12 + w13 + w14 + w15)); const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); // Calculate combined weights and linear sample ratios between texel pairs. // The center texel (with weight w0) is used twice, so halve its weight. const float w0_1 = w0 * 0.5 + w1; const float w2_3 = w2 + w3; const float w4_5 = w4 + w5; const float w6_7 = w6 + w7; const float w8_9 = w8 + w9; const float w10_11 = w10 + w11; const float w12_13 = w12 + w13; const float w14_15 = w14 + w15; const float w0_1_ratio = w1/w0_1; const float w2_3_ratio = w3/w2_3; const float w4_5_ratio = w5/w4_5; const float w6_7_ratio = w7/w6_7; const float w8_9_ratio = w9/w8_9; const float w10_11_ratio = w11/w10_11; const float w12_13_ratio = w13/w12_13; const float w14_15_ratio = w15/w14_15; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb; sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb; sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb; sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb; sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb; sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb; sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb; sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb; sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb; sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb; sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb; sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb; sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb; sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb; sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb; sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest // neighbor and 12 linear taps. It may be mipmapped depending // on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float w6 = exp(-36.0 * denom_inv); const float w7 = exp(-49.0 * denom_inv); const float w8 = exp(-64.0 * denom_inv); const float w9 = exp(-81.0 * denom_inv); const float w10 = exp(-100.0 * denom_inv); const float w11 = exp(-121.0 * denom_inv); const float w12 = exp(-144.0 * denom_inv); //const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12)); const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); // Calculate combined weights and linear sample ratios between texel pairs. const float w1_2 = w1 + w2; const float w3_4 = w3 + w4; const float w5_6 = w5 + w6; const float w7_8 = w7 + w8; const float w9_10 = w9 + w10; const float w11_12 = w11 + w12; const float w1_2_ratio = w2/w1_2; const float w3_4_ratio = w4/w3_4; const float w5_6_ratio = w6/w5_6; const float w7_8_ratio = w8/w7_8; const float w9_10_ratio = w10/w9_10; const float w11_12_ratio = w12/w11_12; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb; sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb; sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb; sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb; sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb; sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb; sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb; sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb; sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb; sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb; sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb; return sum * weight_sum_inv; } float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Same as tex2Dblur11() // Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest // neighbor and 8 linear taps. It may be mipmapped depending // on settings and dxdy. // First get the texel weights and normalization factor as above. const float denom_inv = 0.5/(sigma*sigma); const float w0 = 1.0; const float w1 = exp(-1.0 * denom_inv); const float w2 = exp(-4.0 * denom_inv); const float w3 = exp(-9.0 * denom_inv); const float w4 = exp(-16.0 * denom_inv); const float w5 = exp(-25.0 * denom_inv); const float w6 = exp(-36.0 * denom_inv); const float w7 = exp(-49.0 * denom_inv); const float w8 = exp(-64.0 * denom_inv); //const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8)); const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); // Calculate combined weights and linear sample ratios between texel pairs. const float w1_2 = w1 + w2; const float w3_4 = w3 + w4; const float w5_6 = w5 + w6; const float w7_8 = w7 + w8; const float w1_2_ratio = w2/w1_2; const float w3_4_ratio = w4/w3_4; const float w5_6_ratio = w6/w5_6; const float w7_8_ratio = w8/w7_8; // Statically normalize weights, sum weighted samples, and return: float3 sum = float3(0.0,0.0,0.0); sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb; sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb; sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb; sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb; sum += w0 * tex2D_linearize(tex, tex_uv).rgb; sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb; sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb; sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb; sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb; return sum * weight_sum_inv; } //////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS //////////////////// float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Requires: Global requirements must be met (see file description). // Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the // resized input. // Description: // This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize // would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize. const float denom_inv = 0.5/(sigma*sigma); // Load each sample. We need all 3x3 samples. Quad-pixel communication // won't help either: This should perform like tex2Dblur5x5, but sharing a // 4x4 sample field would perform more like tex2Dblur8x8shared (worse). const float2 sample4_uv = tex_uv; const float2 dx = float2(dxdy.x, 0.0); const float2 dy = float2(0.0, dxdy.y); const float2 sample1_uv = sample4_uv - dy; const float2 sample7_uv = sample4_uv + dy; const float3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb; const float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb; const float3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb; const float3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb; const float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb; const float3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb; const float3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb; const float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb; const float3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb; // Statically compute Gaussian sample weights: const float w4 = 1.0; const float w1_3_5_7 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv); const float w0_2_6_8 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8)); // Weight and sum the samples: const float3 sum = w4 * sample4 + w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) + w0_2_6_8 * (sample0 + sample2 + sample6 + sample8); return sum * weight_sum_inv; } //////////////////////////// FASTER ONE-PASS BLURS /////////////////////////// float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. // Requires: Same as tex2Dblur9() // Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of // 5x5 carefully selected bilinear samples. // Description: // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the // bilinear sample location to reflect the true Gaussian weights for each // underlying texel. The following diagram illustrates the relative // locations of bilinear samples. Each sample with the same number has the // same weight (notice the symmetry). The letters a, b, c, d distinguish // quadrants, and the letters U, D, L, R, C (up, down, left, right, center) // distinguish 1D directions along the line containing the pixel center: // 6a 5a 2U 5b 6b // 4a 3a 1U 3b 4b // 2L 1L 0C 1R 2R // 4c 3c 1D 3d 4d // 6c 5c 2D 5d 6d // The following diagram illustrates the underlying equally spaced texels, // named after the sample that accesses them and subnamed by their location // within their 2x2, 2x1, 1x2, or 1x1 texel block: // 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4 // 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2 // 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4 // 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2 // 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2 // 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2 // 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4 // 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2 // 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4 // Note there is only one C texel and only two texels for each U, D, L, or // R sample. The center sample is effectively a nearest neighbor sample, // and the U/D/L/R samples use 1D linear filtering. All other texels are // read with bilinear samples somewhere within their 2x2 texel blocks. // COMPUTE TEXTURE COORDS: // Statically compute sampling offsets within each 2x2 texel block, based // on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from // the center, and reuse them independently for both dimensions. Compute // these offsets based on the relative 1D Gaussian weights of the texels // in question. (w1off means "Gaussian weight for the texel 1.0 texels // away from the pixel center," etc.). const float denom_inv = 0.5/(sigma*sigma); const float w1off = exp(-1.0 * denom_inv); const float w2off = exp(-4.0 * denom_inv); const float w3off = exp(-9.0 * denom_inv); const float w4off = exp(-16.0 * denom_inv); const float texel1to2ratio = w2off/(w1off + w2off); const float texel3to4ratio = w4off/(w3off + w4off); // Statically compute texel offsets from the fragment center to each // bilinear sample in the bottom-right quadrant, including x-axis-aligned: const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0); const float2 sample2R_texel_offset = float2(3.0, 0.0) + float2(texel3to4ratio, 0.0); const float2 sample3d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio); const float2 sample4d_texel_offset = float2(3.0, 1.0) + float2(texel3to4ratio, texel1to2ratio); const float2 sample5d_texel_offset = float2(1.0, 3.0) + float2(texel1to2ratio, texel3to4ratio); const float2 sample6d_texel_offset = float2(3.0, 3.0) + float2(texel3to4ratio, texel3to4ratio); // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: // Statically compute Gaussian texel weights for the bottom-right quadrant. // Read underscores as "and." const float w1R1 = w1off; const float w1R2 = w2off; const float w2R1 = w3off; const float w2R2 = w4off; const float w3d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); const float w3d2_3d3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv); const float w3d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv); const float w4d1_5d1 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv); const float w4d2_5d3 = exp(-LENGTH_SQ(float2(4.0, 1.0)) * denom_inv); const float w4d3_5d2 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv); const float w4d4_5d4 = exp(-LENGTH_SQ(float2(4.0, 2.0)) * denom_inv); const float w6d1 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv); const float w6d2_6d3 = exp(-LENGTH_SQ(float2(4.0, 3.0)) * denom_inv); const float w6d4 = exp(-LENGTH_SQ(float2(4.0, 4.0)) * denom_inv); // Statically add texel weights in each sample to get sample weights: const float w0 = 1.0; const float w1 = w1R1 + w1R2; const float w2 = w2R1 + w2R2; const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4; const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4; const float w5 = w4; const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4; // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6)); // LOAD TEXTURE SAMPLES: // Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry: const float2 mirror_x = float2(-1.0, 1.0); const float2 mirror_y = float2(1.0, -1.0); const float2 mirror_xy = float2(-1.0, -1.0); const float2 dxdy_mirror_x = dxdy * mirror_x; const float2 dxdy_mirror_y = dxdy * mirror_y; const float2 dxdy_mirror_xy = dxdy * mirror_xy; // Sampling order doesn't seem to affect performance, so just be clear: const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb; const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb; const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb; const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb; const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb; const float3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset).rgb; const float3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx).rgb; const float3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset).rgb; const float3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx).rgb; const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb; const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb; const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb; const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb; const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb; const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb; const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb; const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb; const float3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset).rgb; const float3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb; const float3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb; const float3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb; const float3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset).rgb; const float3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb; const float3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb; const float3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb; // SUM WEIGHTED SAMPLES: // Statically normalize weights (so total = 1.0), and sum weighted samples. float3 sum = w0 * sample0C; sum += w1 * (sample1R + sample1D + sample1L + sample1U); sum += w2 * (sample2R + sample2D + sample2L + sample2U); sum += w3 * (sample3d + sample3c + sample3b + sample3a); sum += w4 * (sample4d + sample4c + sample4b + sample4a); sum += w5 * (sample5d + sample5c + sample5b + sample5a); sum += w6 * (sample6d + sample6c + sample6b + sample6a); return sum * weight_sum_inv; } float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Perform a 1-pass 7x7 blur with 5x5 bilinear samples. // Requires: Same as tex2Dblur9() // Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of // 4x4 carefully selected bilinear samples. // Description: // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This // blur mixes concepts from both. The sample layout is as follows: // 4a 3a 3b 4b // 2a 1a 1b 2b // 2c 1c 1d 2d // 4c 3c 3d 4d // The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d, // and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c, // 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share // the center texel): // 4a4 4a3 3a4 3ab3 3b4 4b3 4b4 // 4a2 4a1 3a2 3ab1 3b2 4b1 4b2 // 2a4 2a3 1a4 1ab3 1b4 2b3 2b4 // 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2 // 2c4 2c3 1c4 1cd3 1d4 2d3 2d4 // 4c2 4c1 3c2 3cd1 3d2 4d1 4d2 // 4c4 4c3 3c4 3cd3 3d4 4d3 4d4 // COMPUTE TEXTURE COORDS: // Statically compute bilinear sampling offsets (details in tex2Dblur9x9). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w1off = exp(-1.0 * denom_inv); const float w2off = exp(-4.0 * denom_inv); const float w3off = exp(-9.0 * denom_inv); const float texel0to1ratio = w1off/(w0off * 0.5 + w1off); const float texel2to3ratio = w3off/(w2off + w3off); // Statically compute texel offsets from the fragment center to each // bilinear sample in the bottom-right quadrant, including axis-aligned: const float2 sample1d_texel_offset = float2(texel0to1ratio, texel0to1ratio); const float2 sample2d_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample3d_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample4d_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: // Statically compute Gaussian texel weights for the bottom-right quadrant. // Read underscores as "and." const float w1abcd = 1.0; const float w1bd2_1cd3 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv); const float w2bd1_3cd1 = exp(-LENGTH_SQ(float2(2.0, 0.0)) * denom_inv); const float w2bd2_3cd2 = exp(-LENGTH_SQ(float2(3.0, 0.0)) * denom_inv); const float w1d4 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); const float w2d3_3d2 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv); const float w2d4_3d4 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv); const float w4d1 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv); const float w4d2_4d3 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv); const float w4d4 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv); // Statically add texel weights in each sample to get sample weights. // Split weights for shared texels between samples sharing them: const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4; const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4; const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4; // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(4.0 * (w1 + 2.0 * w2_3 + w4)); // LOAD TEXTURE SAMPLES: // Load all 16 samples using symmetry: const float2 mirror_x = float2(-1.0, 1.0); const float2 mirror_y = float2(1.0, -1.0); const float2 mirror_xy = float2(-1.0, -1.0); const float2 dxdy_mirror_x = dxdy * mirror_x; const float2 dxdy_mirror_y = dxdy * mirror_y; const float2 dxdy_mirror_xy = dxdy * mirror_xy; const float3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb; const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb; const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb; const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb; const float3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb; const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb; const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb; const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb; const float3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb; const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb; const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb; const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb; const float3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset).rgb; const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb; const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb; const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb; // SUM WEIGHTED SAMPLES: // Statically normalize weights (so total = 1.0), and sum weighted samples. float3 sum = float3(0.0,0.0,0.0); sum += w1 * (sample1a + sample1b + sample1c + sample1d); sum += w2_3 * (sample2a + sample2b + sample2c + sample2d); sum += w2_3 * (sample3a + sample3b + sample3c + sample3d); sum += w4 * (sample4a + sample4b + sample4c + sample4d); return sum * weight_sum_inv; } float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Perform a 1-pass 5x5 blur with 3x3 bilinear samples. // Requires: Same as tex2Dblur9() // Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of // 3x3 carefully selected bilinear samples. // Description: // First see the description for tex2Dblur9x9(). This blur uses the same // concept and sample/texel locations except on a smaller scale. Samples: // 2a 1U 2b // 1L 0C 1R // 2c 1D 2d // Texels: // 2a4 2a3 1U2 2b3 2b4 // 2a2 2a1 1U1 2b1 2b2 // 1L2 1L1 0C1 1R1 1R2 // 2c2 2c1 1D1 2d1 2d2 // 2c4 2c3 1D2 2d3 2d4 // COMPUTE TEXTURE COORDS: // Statically compute bilinear sampling offsets (details in tex2Dblur9x9). const float denom_inv = 0.5/(sigma*sigma); const float w1off = exp(-1.0 * denom_inv); const float w2off = exp(-4.0 * denom_inv); const float texel1to2ratio = w2off/(w1off + w2off); // Statically compute texel offsets from the fragment center to each // bilinear sample in the bottom-right quadrant, including x-axis-aligned: const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0); const float2 sample2d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio); // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: // Statically compute Gaussian texel weights for the bottom-right quadrant. // Read underscores as "and." const float w1R1 = w1off; const float w1R2 = w2off; const float w2d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); const float w2d2_3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv); const float w2d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv); // Statically add texel weights in each sample to get sample weights: const float w0 = 1.0; const float w1 = w1R1 + w1R2; const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4; // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2)); // LOAD TEXTURE SAMPLES: // Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry: const float2 mirror_x = float2(-1.0, 1.0); const float2 mirror_y = float2(1.0, -1.0); const float2 mirror_xy = float2(-1.0, -1.0); const float2 dxdy_mirror_x = dxdy * mirror_x; const float2 dxdy_mirror_y = dxdy * mirror_y; const float2 dxdy_mirror_xy = dxdy * mirror_xy; const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb; const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb; const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb; const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb; const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb; const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb; const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb; const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb; const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb; // SUM WEIGHTED SAMPLES: // Statically normalize weights (so total = 1.0), and sum weighted samples. float3 sum = w0 * sample0C; sum += w1 * (sample1R + sample1D + sample1L + sample1U); sum += w2 * (sample2a + sample2b + sample2c + sample2d); return sum * weight_sum_inv; } float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv, const float2 dxdy, const float sigma) { // Perform a 1-pass 3x3 blur with 5x5 bilinear samples. // Requires: Same as tex2Dblur9() // Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of // 2x2 carefully selected bilinear samples. // Description: // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This // blur mixes concepts from both. The sample layout is as follows: // 0a 0b // 0c 0d // The texel layout is as follows. Note that samples 0a/0b and 0c/0d share // a vertical column of texels, and samples 0a/0c and 0b/0d share a // horizontal row of texels (all samples share the center texel): // 0a3 0ab2 0b3 // 0ac1 0*0 0bd1 // 0c3 0cd2 0d3 // COMPUTE TEXTURE COORDS: // Statically compute bilinear sampling offsets (details in tex2Dblur9x9). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w1off = exp(-1.0 * denom_inv); const float texel0to1ratio = w1off/(w0off * 0.5 + w1off); // Statically compute texel offsets from the fragment center to each // bilinear sample in the bottom-right quadrant, including axis-aligned: const float2 sample0d_texel_offset = float2(texel0to1ratio, texel0to1ratio); // LOAD TEXTURE SAMPLES: // Load all 4 samples using symmetry: const float2 mirror_x = float2(-1.0, 1.0); const float2 mirror_y = float2(1.0, -1.0); const float2 mirror_xy = float2(-1.0, -1.0); const float2 dxdy_mirror_x = dxdy * mirror_x; const float2 dxdy_mirror_y = dxdy * mirror_y; const float2 dxdy_mirror_xy = dxdy * mirror_xy; const float3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb; const float3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb; const float3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb; const float3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset).rgb; // SUM WEIGHTED SAMPLES: // Weights for all samples are the same, so just average them: return 0.25 * (sample0a + sample0b + sample0c + sample0d); } ////////////////// LINEAR ONE-PASS BLURS WITH SHARED SAMPLES ///////////////// float3 tex2Dblur12x12shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector, const float sigma) { // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. // Requires: 1.) Same as tex2Dblur9() // 2.) ddx() and ddy() are present in the current Cg profile. // 3.) The GPU driver is using fine/high-quality derivatives. // 4.) quad_vector *correctly* describes the current fragment's // location in its pixel quad, by the conventions noted in // get_quad_vector[_naive]. // 5.) tex_uv.w = log2(video_size/output_size).y // 6.) tex2Dlod() is present in the current Cg profile. // Optional: Tune artifacts vs. excessive blurriness with the global // float error_blurring. // Returns: A blurred texture lookup using a "virtual" 12x12 Gaussian // blur (a 6x6 blur of carefully selected bilinear samples) // of the given mip level. There will be subtle inaccuracies, // especially for small or high-frequency detailed sources. // Description: // Perform a 1-pass blur with shared texture lookups across a pixel quad. // We'll get neighboring samples with high-quality ddx/ddy derivatives, as // in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad // Message Passing" by Eric Penner. // // Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12 // bilinear samples, where bilinear sampling positions are computed from // the relative Gaussian weights of the 4 surrounding texels. The catch is // that the appropriate texel weights and sample coords differ for each // fragment, but we're reusing most of the same samples across a quad of // destination fragments. (We do use unique coords for the four nearest // samples at each fragment.) Mixing bilinear filtering and sample-sharing // therefore introduces some error into the weights, and this can get nasty // when the source image is small or high-frequency. Computing bilinear // ratios based on weights at the sample field center results in sharpening // and ringing artifacts, but we can move samples closer to halfway between // texels to try blurring away the error (which can move features around by // a texel or so). Tune this with the global float "error_blurring". // // The pixel quad's sample field covers 12x12 texels, accessed through 6x6 // bilinear (2x2 texel) taps. Each fragment depends on a window of 10x10 // texels (5x5 bilinear taps), and each fragment is responsible for loading // a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps // to use unique bilinear coords for sample0* for each fragment. This // diagram illustrates the relative locations of bilinear samples 1-9 for // each quadrant a, b, c, d (note samples will not be equally spaced): // 8a 7a 6a 6b 7b 8b // 5a 4a 3a 3b 4b 5b // 2a 1a 0a 0b 1b 2b // 2c 1c 0c 0d 1d 2d // 5c 4c 3c 3d 4d 5d // 8c 7c 6c 6d 7d 8d // The following diagram illustrates the underlying equally spaced texels, // named after the sample that accesses them and subnamed by their location // within their 2x2 texel block: // 8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3 // 8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1 // 5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3 // 5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1 // 2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3 // 2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1 // 2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1 // 2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3 // 5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1 // 5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3 // 8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1 // 8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3 // With this symmetric arrangement, we don't have to know which absolute // quadrant a sample lies in to assign kernel weights; it's enough to know // the sample number and the relative quadrant of the sample (relative to // the current quadrant): // {current, adjacent x, adjacent y, diagonal} // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Statically compute sampling offsets within each 2x2 texel block, based // on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3], // and [4, 5] away from the fragment, and reuse them independently for both // dimensions. Use the sample field center as the estimated destination, // but nudge the result closer to halfway between texels to blur error. const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w0_5off = exp(-(0.5*0.5) * denom_inv); const float w1off = exp(-(1.0*1.0) * denom_inv); const float w1_5off = exp(-(1.5*1.5) * denom_inv); const float w2off = exp(-(2.0*2.0) * denom_inv); const float w2_5off = exp(-(2.5*2.5) * denom_inv); const float w3_5off = exp(-(3.5*3.5) * denom_inv); const float w4_5off = exp(-(4.5*4.5) * denom_inv); const float w5_5off = exp(-(5.5*5.5) * denom_inv); const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring); // We don't share sample0*, so use the nearest destination fragment: const float texel0to1ratio_nearest = w1off/(w0off + w1off); const float texel1to2ratio_nearest = w2off/(w1off + w2off); // Statically compute texel offsets from the bottom-right fragment to each // bilinear sample in the bottom-right quadrant: const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio); const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio); const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio); const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio); const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio); // CALCULATE KERNEL WEIGHTS: // Statically compute bilinear sample weights at each destination fragment // based on the sum of their 4 underlying texel weights. Assume a same- // resolution blur, so each symmetrically named sample weight will compute // the same at every fragment in the pixel quad: We can therefore compute // texel weights based only on the bottom-right quadrant (fragment at 0d0). // Too avoid too much boilerplate code, use a macro to get all 4 texel // weights for a bilinear sample based on the offset of its top-left texel: #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0); const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0); const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0); const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0); const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0); const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0); const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0); const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0); const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0); const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0); const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0); const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0); const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0); const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0); const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0); const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0); const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0); const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0); const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0); const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0); #undef GET_TEXEL_QUAD_WEIGHTS // Statically pack weights for runtime: const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag); const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag); const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag); const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag); const float4 w5 = float4(w5curr, w5adjx, w5adjy, w5diag); const float4 w6 = float4(w6curr, w6adjx, w6adjy, w6diag); const float4 w7 = float4(w7curr, w7adjx, w7adjy, w7diag); const float4 w8 = float4(w8curr, w8adjx, w8adjy, w8diag); // Get the weight sum inverse (normalization factor): const float4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8; const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw; const float weight_sum = weight_sum2.x + weight_sum2.y; const float weight_sum_inv = 1.0/(weight_sum); // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: const float2 dxdy_curr = dxdy * quad_vector.xy; // Load bilinear samples for the current quadrant (for this fragment): const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb; const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb; const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb; const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb; const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb; // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: // Fetch the samples from other fragments in the 2x2 quad: float3 sample1adjx, sample1adjy, sample1diag; float3 sample2adjx, sample2adjy, sample2diag; float3 sample3adjx, sample3adjy, sample3diag; float3 sample4adjx, sample4adjy, sample4diag; float3 sample5adjx, sample5adjy, sample5diag; float3 sample6adjx, sample6adjy, sample6diag; float3 sample7adjx, sample7adjy, sample7diag; float3 sample8adjx, sample8adjy, sample8diag; quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag); quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag); quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag); quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag); quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag); // Statically normalize weights (so total = 1.0), and sum weighted samples. // Fill each row of a matrix with an rgb sample and pre-multiply by the // weights to obtain a weighted result: float3 sum = float3(0.0,0.0,0.0); sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag)); sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag)); sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag)); sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag)); sum += mul(w5, float4x3(sample5curr, sample5adjx, sample5adjy, sample5diag)); sum += mul(w6, float4x3(sample6curr, sample6adjx, sample6adjy, sample6diag)); sum += mul(w7, float4x3(sample7curr, sample7adjx, sample7adjy, sample7diag)); sum += mul(w8, float4x3(sample8curr, sample8adjx, sample8adjy, sample8diag)); return sum * weight_sum_inv; } float3 tex2Dblur10x10shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector, const float sigma) { // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. // Requires: Same as tex2Dblur12x12shared() // Returns: A blurred texture lookup using a "virtual" 10x10 Gaussian // blur (a 5x5 blur of carefully selected bilinear samples) // of the given mip level. There will be subtle inaccuracies, // especially for small or high-frequency detailed sources. // Description: // First see the description for tex2Dblur12x12shared(). This // function shares the same concept and sample placement, but each fragment // only uses 25 of the 36 samples taken across the pixel quad (to cover a // 5x5 sample area, or 10x10 texel area), and it uses a lower standard // deviation to compensate. Thanks to symmetry, the 11 omitted samples // are always the "same:" // 8adjx, 2adjx, 5adjx, // 6adjy, 7adjy, 8adjy, // 2diag, 5diag, 6diag, 7diag, 8diag // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w0_5off = exp(-(0.5*0.5) * denom_inv); const float w1off = exp(-(1.0*1.0) * denom_inv); const float w1_5off = exp(-(1.5*1.5) * denom_inv); const float w2off = exp(-(2.0*2.0) * denom_inv); const float w2_5off = exp(-(2.5*2.5) * denom_inv); const float w3_5off = exp(-(3.5*3.5) * denom_inv); const float w4_5off = exp(-(4.5*4.5) * denom_inv); const float w5_5off = exp(-(5.5*5.5) * denom_inv); const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring); // We don't share sample0*, so use the nearest destination fragment: const float texel0to1ratio_nearest = w1off/(w0off + w1off); const float texel1to2ratio_nearest = w2off/(w1off + w2off); // Statically compute texel offsets from the bottom-right fragment to each // bilinear sample in the bottom-right quadrant: const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio); const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio); const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio); const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio); const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio); // CALCULATE KERNEL WEIGHTS: // Statically compute bilinear sample weights at each destination fragment // from the sum of their 4 texel weights (details in tex2Dblur12x12shared). #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) // We only need 25 of the 36 sample weights. Skip the following weights: // 8adjx, 2adjx, 5adjx, // 6adjy, 7adjy, 8adjy, // 2diag, 5diag, 6diag, 7diag, 8diag const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0); const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0); const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0); const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0); const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0); const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0); const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0); const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0); const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0); #undef GET_TEXEL_QUAD_WEIGHTS // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr + w4curr + w5curr + w6curr + w7curr + w8curr + w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx + w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy + w0diag + w1diag + w3diag + w4diag); // Statically pack most weights for runtime. Note the mixed packing: const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag); const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag); const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag); const float4 w2and5 = float4(w2curr, w2adjy, w5curr, w5adjy); const float4 w6and7 = float4(w6curr, w6adjx, w7curr, w7adjx); // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: const float2 dxdy_curr = dxdy * quad_vector.xy; // Load bilinear samples for the current quadrant (for this fragment): const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb; const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb; const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb; const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb; const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb; // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: // Fetch the samples from other fragments in the 2x2 quad in order of need: float3 sample1adjx, sample1adjy, sample1diag; float3 sample2adjx, sample2adjy, sample2diag; float3 sample3adjx, sample3adjy, sample3diag; float3 sample4adjx, sample4adjy, sample4diag; float3 sample5adjx, sample5adjy, sample5diag; float3 sample6adjx, sample6adjy, sample6diag; float3 sample7adjx, sample7adjy, sample7diag; quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag); quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag); quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag); quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag); // Statically normalize weights (so total = 1.0), and sum weighted samples. // Fill each row of a matrix with an rgb sample and pre-multiply by the // weights to obtain a weighted result. First do the simple ones: float3 sum = float3(0.0,0.0,0.0); sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag)); sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag)); sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag)); // Now do the mixed-sample ones: sum += mul(w2and5, float4x3(sample2curr, sample2adjy, sample5curr, sample5adjy)); sum += mul(w6and7, float4x3(sample6curr, sample6adjx, sample7curr, sample7adjx)); sum += w8curr * sample8curr; // Normalize the sum (so the weights add to 1.0) and return: return sum * weight_sum_inv; } float3 tex2Dblur8x8shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector, const float sigma) { // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. // Requires: Same as tex2Dblur12x12shared() // Returns: A blurred texture lookup using a "virtual" 8x8 Gaussian // blur (a 4x4 blur of carefully selected bilinear samples) // of the given mip level. There will be subtle inaccuracies, // especially for small or high-frequency detailed sources. // Description: // First see the description for tex2Dblur12x12shared(). This function // shares the same concept and a similar sample placement, except each // quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3 // respectively. There could be a total of 16 samples, 4 of which each // fragment is responsible for, but each fragment loads 0a/0b/0c/0d with // its own offset to reduce shared sample artifacts, bringing the sample // count for each fragment to 7. Sample placement: // 3a 2a 2b 3b // 1a 0a 0b 1b // 1c 0c 0d 1d // 3c 2c 2d 3d // Texel placement: // 3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3 // 3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1 // 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 // 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 // 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 // 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 // 3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1 // 3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3 // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w0_5off = exp(-(0.5*0.5) * denom_inv); const float w1off = exp(-(1.0*1.0) * denom_inv); const float w1_5off = exp(-(1.5*1.5) * denom_inv); const float w2off = exp(-(2.0*2.0) * denom_inv); const float w2_5off = exp(-(2.5*2.5) * denom_inv); const float w3_5off = exp(-(3.5*3.5) * denom_inv); const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); // We don't share sample0*, so use the nearest destination fragment: const float texel0to1ratio_nearest = w1off/(w0off + w1off); const float texel1to2ratio_nearest = w2off/(w1off + w2off); // Statically compute texel offsets from the bottom-right fragment to each // bilinear sample in the bottom-right quadrant: const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); // CALCULATE KERNEL WEIGHTS: // Statically compute bilinear sample weights at each destination fragment // from the sum of their 4 texel weights (details in tex2Dblur12x12shared). #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); #undef GET_TEXEL_QUAD_WEIGHTS // Statically pack weights for runtime: const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag); const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag); const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag); // Get the weight sum inverse (normalization factor): const float4 weight_sum4 = w0 + w1 + w2 + w3; const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw; const float weight_sum = weight_sum2.x + weight_sum2.y; const float weight_sum_inv = 1.0/(weight_sum); // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: const float2 dxdy_curr = dxdy * quad_vector.xy; // Load bilinear samples for the current quadrant (for this fragment): const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: // Fetch the samples from other fragments in the 2x2 quad: float3 sample1adjx, sample1adjy, sample1diag; float3 sample2adjx, sample2adjy, sample2diag; float3 sample3adjx, sample3adjy, sample3diag; quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); // Statically normalize weights (so total = 1.0), and sum weighted samples. // Fill each row of a matrix with an rgb sample and pre-multiply by the // weights to obtain a weighted result: float3 sum = float3(0.0,0.0,0.0); sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag)); sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag)); sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag)); return sum * weight_sum_inv; } float3 tex2Dblur6x6shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector, const float sigma) { // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. // Requires: Same as tex2Dblur12x12shared() // Returns: A blurred texture lookup using a "virtual" 6x6 Gaussian // blur (a 3x3 blur of carefully selected bilinear samples) // of the given mip level. There will be some inaccuracies,subtle inaccuracies, // especially for small or high-frequency detailed sources. // Description: // First see the description for tex2Dblur8x8shared(). This // function shares the same concept and sample placement, but each fragment // only uses 9 of the 16 samples taken across the pixel quad (to cover a // 3x3 sample area, or 6x6 texel area), and it uses a lower standard // deviation to compensate. Thanks to symmetry, the 7 omitted samples // are always the "same:" // 1adjx, 3adjx // 2adjy, 3adjy // 1diag, 2diag, 3diag // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). const float denom_inv = 0.5/(sigma*sigma); const float w0off = 1.0; const float w0_5off = exp(-(0.5*0.5) * denom_inv); const float w1off = exp(-(1.0*1.0) * denom_inv); const float w1_5off = exp(-(1.5*1.5) * denom_inv); const float w2off = exp(-(2.0*2.0) * denom_inv); const float w2_5off = exp(-(2.5*2.5) * denom_inv); const float w3_5off = exp(-(3.5*3.5) * denom_inv); const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); // We don't share sample0*, so use the nearest destination fragment: const float texel0to1ratio_nearest = w1off/(w0off + w1off); const float texel1to2ratio_nearest = w2off/(w1off + w2off); // Statically compute texel offsets from the bottom-right fragment to each // bilinear sample in the bottom-right quadrant: const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); // CALCULATE KERNEL WEIGHTS: // Statically compute bilinear sample weights at each destination fragment // from the sum of their 4 texel weights (details in tex2Dblur12x12shared). #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) // We only need 9 of the 16 sample weights. Skip the following weights: // 1adjx, 3adjx // 2adjy, 3adjy // 1diag, 2diag, 3diag const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); #undef GET_TEXEL_QUAD_WEIGHTS // Get the weight sum inverse (normalization factor): const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr + w0adjx + w2adjx + w0adjy + w1adjy + w0diag); // Statically pack some weights for runtime: const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: const float2 dxdy_curr = dxdy * quad_vector.xy; // Load bilinear samples for the current quadrant (for this fragment): const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: // Fetch the samples from other fragments in the 2x2 quad: float3 sample1adjx, sample1adjy, sample1diag; float3 sample2adjx, sample2adjy, sample2diag; quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); // Statically normalize weights (so total = 1.0), and sum weighted samples. // Fill each row of a matrix with an rgb sample and pre-multiply by the // weights to obtain a weighted result for sample1*, and handle the rest // of the weights more directly/verbosely: float3 sum = float3(0.0,0.0,0.0); sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr + w2adjx * sample2adjx + w3curr * sample3curr; return sum * weight_sum_inv; } /////////////////////// MAX OPTIMAL SIGMA BLUR WRAPPERS ////////////////////// // The following blurs are static wrappers around the dynamic blurs above. // HOPEFULLY, the compiler will be smart enough to do constant-folding. // Resizable separable blurs: inline float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur11resize(tex, tex_uv, dxdy, blur11_std_dev); } inline float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur9resize(tex, tex_uv, dxdy, blur9_std_dev); } inline float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur7resize(tex, tex_uv, dxdy, blur7_std_dev); } inline float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur5resize(tex, tex_uv, dxdy, blur5_std_dev); } inline float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur3resize(tex, tex_uv, dxdy, blur3_std_dev); } // Fast separable blurs: inline float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur11fast(tex, tex_uv, dxdy, blur11_std_dev); } inline float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev); } inline float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur7fast(tex, tex_uv, dxdy, blur7_std_dev); } inline float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur5fast(tex, tex_uv, dxdy, blur5_std_dev); } inline float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur3fast(tex, tex_uv, dxdy, blur3_std_dev); } // Huge, "fast" separable blurs: inline float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur43fast(tex, tex_uv, dxdy, blur43_std_dev); } inline float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur31fast(tex, tex_uv, dxdy, blur31_std_dev); } inline float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur25fast(tex, tex_uv, dxdy, blur25_std_dev); } inline float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur17fast(tex, tex_uv, dxdy, blur17_std_dev); } // Resizable one-pass blurs: inline float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur3x3resize(tex, tex_uv, dxdy, blur3_std_dev); } // "Fast" one-pass blurs: inline float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur9x9(tex, tex_uv, dxdy, blur9_std_dev); } inline float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur7x7(tex, tex_uv, dxdy, blur7_std_dev); } inline float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur5x5(tex, tex_uv, dxdy, blur5_std_dev); } inline float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv, const float2 dxdy) { return tex2Dblur3x3(tex, tex_uv, dxdy, blur3_std_dev); } // "Fast" shared-sample one-pass blurs: inline float3 tex2Dblur12x12shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector) { return tex2Dblur12x12shared(tex, tex_uv, dxdy, quad_vector, blur12_std_dev); } inline float3 tex2Dblur10x10shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector) { return tex2Dblur10x10shared(tex, tex_uv, dxdy, quad_vector, blur10_std_dev); } inline float3 tex2Dblur8x8shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector) { return tex2Dblur8x8shared(tex, tex_uv, dxdy, quad_vector, blur8_std_dev); } inline float3 tex2Dblur6x6shared(const sampler2D tex, const float4 tex_uv, const float2 dxdy, const float4 quad_vector) { return tex2Dblur6x6shared(tex, tex_uv, dxdy, quad_vector, blur6_std_dev); } #endif // BLUR_FUNCTIONS_H //////////////////////////// END BLUR-FUNCTIONS /////////////////////////// void main() { // Sample the masked scanlines: const float3 intensity_dim = tex2D_linearize(MASKED_SCANLINEStexture, scanline_tex_uv).rgb; // Get the full intensity, including auto-undimming, and mask compensation: const float auto_dim_factor = levels_autodim_temp; const float undim_factor = 1.0/auto_dim_factor; const float mask_amplify = get_mask_amplify(); const float3 intensity = intensity_dim * undim_factor * mask_amplify * levels_contrast; // Sample BLOOM_APPROX to estimate what a straight blur of masked scanlines // would look like, so we can estimate how much energy we'll receive from // blooming neighbors: const float3 phosphor_blur_approx = levels_contrast * tex2D_linearize( BLOOM_APPROXtexture, blur3x3_tex_uv).rgb; // Compute the blur weight for the center texel and the maximum energy we // expect to receive from neighbors: const float bloom_sigma = get_final_bloom_sigma(bloom_sigma_runtime); const float center_weight = get_center_weight(bloom_sigma); const float3 max_area_contribution_approx = max(float3(0.0, 0.0, 0.0), phosphor_blur_approx - center_weight * intensity); // Assume neighbors will blur 100% of their intensity (blur_ratio = 1.0), // because it actually gets better results (on top of being very simple), // but adjust all intensities for the user's desired underestimate factor: const float3 area_contrib_underestimate = bloom_underestimate_levels * max_area_contribution_approx; const float3 intensity_underestimate = bloom_underestimate_levels * intensity; // Calculate the blur_ratio, the ratio of intensity we want to blur: #ifdef BRIGHTPASS_AREA_BASED // This area-based version changes blur_ratio more smoothly and blurs // more, clipping less but offering less phosphor differentiation: const float3 phosphor_blur_underestimate = bloom_underestimate_levels * phosphor_blur_approx; const float3 soft_intensity = max(intensity_underestimate, phosphor_blur_underestimate * mask_amplify); const float3 blur_ratio_temp = ((float3(1.0, 1.0, 1.0) - area_contrib_underestimate) / soft_intensity - float3(1.0, 1.0, 1.0)) / (center_weight - 1.0); #else const float3 blur_ratio_temp = ((float3(1.0, 1.0, 1.0) - area_contrib_underestimate) / intensity_underestimate - float3(1.0, 1.0, 1.0)) / (center_weight - 1.0); #endif const float3 blur_ratio = clamp(blur_ratio_temp, 0.0, 1.0); // Calculate the brightpass based on the auto-dimmed, unamplified, masked // scanlines, encode if necessary, and return! const float3 brightpass = intensity_dim * lerp(blur_ratio, float3(1.0, 1.0, 1.0), bloom_excess); FragColor = encode_output(float4(brightpass, 1.0)); }