#include struct AudioALSA : AudioDriver { AudioALSA& self = *this; AudioALSA(Audio& super) : AudioDriver(super) {} ~AudioALSA() { terminate(); } auto create() -> bool override { super.setDevice(hasDevices().first()); super.setChannels(2); super.setFrequency(48000); super.setLatency(20); return initialize(); } auto driver() -> string override { return "ALSA"; } auto ready() -> bool override { return _ready; } auto hasBlocking() -> bool override { return true; } auto hasDynamic() -> bool override { return true; } auto hasDevices() -> vector override { vector devices; char** list; if(snd_device_name_hint(-1, "pcm", (void***)&list) == 0) { uint index = 0; while(list[index]) { char* deviceName = snd_device_name_get_hint(list[index], "NAME"); if(deviceName) devices.append(deviceName); free(deviceName); index++; } } snd_device_name_free_hint((void**)list); return devices; } auto hasChannels() -> vector override { return {2}; } auto hasFrequencies() -> vector override { return {44100, 48000, 96000}; } auto hasLatencies() -> vector override { return {20, 40, 60, 80, 100}; } auto setDevice(string device) -> bool override { return initialize(); } auto setBlocking(bool blocking) -> bool override { return true; } auto setChannels(uint channels) -> bool override { return true; } auto setFrequency(uint frequency) -> bool override { return initialize(); } auto setLatency(uint latency) -> bool override { return initialize(); } auto level() -> double override { snd_pcm_sframes_t available; for(uint timeout : range(256)) { available = snd_pcm_avail_update(_interface); if(available >= 0) break; snd_pcm_recover(_interface, available, 1); } return (double)(_bufferSize - available) / _bufferSize; } auto output(const double samples[]) -> void override { _buffer[_offset] = (uint16_t)sclamp<16>(samples[0] * 32767.0) << 0; _buffer[_offset] |= (uint16_t)sclamp<16>(samples[1] * 32767.0) << 16; if(++_offset < _periodSize) return; snd_pcm_sframes_t available; do { available = snd_pcm_avail_update(_interface); if(available < 0) { snd_pcm_recover(_interface, available, 1); continue; } if(available < _offset) { if(!self.blocking) { _offset = 0; return; } int error = snd_pcm_wait(_interface, -1); if(error < 0) snd_pcm_recover(_interface, error, 1); } } while(available < _offset); uint32_t* output = _buffer; int i = 4; while(_offset > 0 && i--) { snd_pcm_sframes_t written = snd_pcm_writei(_interface, output, _offset); if(written < 0) { //no samples written snd_pcm_recover(_interface, written, 1); } else if(written <= _offset) { _offset -= written; output += written; } } if(i < 0) { if(_buffer == output) { _offset--; output++; } memory::move(_buffer, output, _offset); } } private: auto initialize() -> bool { terminate(); if(!hasDevices().find(self.device)) self.device = hasDevices().first(); if(snd_pcm_open(&_interface, self.device, SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK) < 0) return terminate(), false; uint rate = self.frequency; uint bufferTime = self.latency * 1000; uint periodTime = self.latency * 1000 / 8; snd_pcm_hw_params_t* hardwareParameters; snd_pcm_hw_params_alloca(&hardwareParameters); if(snd_pcm_hw_params_any(_interface, hardwareParameters) < 0) return terminate(), false; if(snd_pcm_hw_params_set_access(_interface, hardwareParameters, SND_PCM_ACCESS_RW_INTERLEAVED) < 0 || snd_pcm_hw_params_set_format(_interface, hardwareParameters, SND_PCM_FORMAT_S16_LE) < 0 || snd_pcm_hw_params_set_channels(_interface, hardwareParameters, 2) < 0 || snd_pcm_hw_params_set_rate_near(_interface, hardwareParameters, &rate, 0) < 0 || snd_pcm_hw_params_set_period_time_near(_interface, hardwareParameters, &periodTime, 0) < 0 || snd_pcm_hw_params_set_buffer_time_near(_interface, hardwareParameters, &bufferTime, 0) < 0 ) return terminate(), false; if(snd_pcm_hw_params(_interface, hardwareParameters) < 0) return terminate(), false; if(snd_pcm_get_params(_interface, &_bufferSize, &_periodSize) < 0) return terminate(), false; snd_pcm_sw_params_t* softwareParameters; snd_pcm_sw_params_alloca(&softwareParameters); if(snd_pcm_sw_params_current(_interface, softwareParameters) < 0) return terminate(), false; if(snd_pcm_sw_params_set_start_threshold(_interface, softwareParameters, _bufferSize / 2) < 0) return terminate(), false; if(snd_pcm_sw_params(_interface, softwareParameters) < 0) return terminate(), false; _buffer = new uint32_t[_periodSize](); _offset = 0; return _ready = true; } auto terminate() -> void { _ready = false; if(_interface) { //snd_pcm_drain(_interface); //prevents popping noise; but causes multi-second lag snd_pcm_close(_interface); _interface = nullptr; } if(_buffer) { delete[] _buffer; _buffer = nullptr; } } bool _ready = false; snd_pcm_t* _interface = nullptr; snd_pcm_uframes_t _bufferSize; snd_pcm_uframes_t _periodSize; uint32_t* _buffer = nullptr; uint _offset = 0; };