#include namespace SuperFamicom { SDD1 sdd1; #include "decompressor.cpp" #include "serialization.cpp" auto SDD1::unload() -> void { rom.reset(); ram.reset(); } auto SDD1::power() -> void { //hook S-CPU DMA MMIO registers to gather information for struct dma[]; //buffer address and transfer size information for use in SDD1::mcu_read() bus.map({&SDD1::dmaRead, &sdd1}, {&SDD1::dmaWrite, &sdd1}, "00-3f,80-bf:4300-437f"); r4800 = 0x00; r4801 = 0x00; r4804 = 0x00; r4805 = 0x01; r4806 = 0x02; r4807 = 0x03; for(auto n : range(8)) { dma[n].addr = 0; dma[n].size = 0; } dmaReady = false; } auto SDD1::read(uint24 addr, uint8 data) -> uint8 { addr = 0x4800 | addr.bits(0,3); switch(addr) { case 0x4800: return r4800; case 0x4801: return r4801; case 0x4804: return r4804; case 0x4805: return r4805; case 0x4806: return r4806; case 0x4807: return r4807; } //00-3f,80-bf:4802-4803,4808-480f falls through to ROM return rom.read(addr); } auto SDD1::write(uint24 addr, uint8 data) -> void { addr = 0x4800 | addr.bits(0,3); switch(addr) { case 0x4800: r4800 = data; break; case 0x4801: r4801 = data; break; case 0x4804: r4804 = data & 0x8f; break; case 0x4805: r4805 = data & 0x8f; break; case 0x4806: r4806 = data & 0x8f; break; case 0x4807: r4807 = data & 0x8f; break; } } auto SDD1::dmaRead(uint24 addr, uint8 data) -> uint8 { return cpu.readDMA(addr, data); } auto SDD1::dmaWrite(uint24 addr, uint8 data) -> void { uint channel = addr.bits(4,6); switch(addr.bits(0,3)) { case 2: dma[channel].addr.byte(0) = data; break; case 3: dma[channel].addr.byte(1) = data; break; case 4: dma[channel].addr.byte(2) = data; break; case 5: dma[channel].size.byte(0) = data; break; case 6: dma[channel].size.byte(1) = data; break; } return cpu.writeDMA(addr, data); } auto SDD1::mmcRead(uint24 addr) -> uint8 { switch(addr.bits(20,21)) { case 0: return rom.read(r4804.bits(0,3) << 20 | addr.bits(0,19)); //c0-cf:0000-ffff case 1: return rom.read(r4805.bits(0,3) << 20 | addr.bits(0,19)); //d0-df:0000-ffff case 2: return rom.read(r4806.bits(0,3) << 20 | addr.bits(0,19)); //e0-ef:0000-ffff case 3: return rom.read(r4807.bits(0,3) << 20 | addr.bits(0,19)); //f0-ff:0000-ffff } unreachable; } //map address=00-3f,80-bf:8000-ffff //map address=c0-ff:0000-ffff auto SDD1::mcuromRead(uint24 addr, uint8 data) -> uint8 { //map address=00-3f,80-bf:8000-ffff if(!addr.bit(22)) { if(!addr.bit(23) && addr.bit(21) && r4805.bit(7)) addr.bit(21) = 0; //20-3f:8000-ffff if( addr.bit(23) && addr.bit(21) && r4807.bit(7)) addr.bit(21) = 0; //a0-bf:8000-ffff addr = addr.bits(16,21) << 15 | addr.bits(0,14); return rom.read(addr); } //map address=c0-ff:0000-ffff if(r4800 & r4801) { //at least one channel has S-DD1 decompression enabled ... for(auto n : range(8)) { if(r4800.bit(n) && r4801.bit(n)) { //S-DD1 always uses fixed transfer mode, so address will not change during transfer if(addr == dma[n].addr) { if(!dmaReady) { //prepare streaming decompression decompressor.init(addr); dmaReady = true; } //fetch a decompressed byte; once finished, disable channel and invalidate buffer data = decompressor.read(); if(--dma[n].size == 0) { dmaReady = false; r4801.bit(n) = 0; } return data; } //address matched } //channel enabled } //channel loop } //S-DD1 decompressor enabled //S-DD1 decompression mode inactive; return ROM data return mmcRead(addr); } auto SDD1::mcuromWrite(uint24 addr, uint8 data) -> void { } //map address=00-3f,80-bf:6000-7fff mask=0xe000 //map address=70-73:0000-ffff mask=0x8000 auto SDD1::mcuramRead(uint24 addr, uint8 data) -> uint8 { return ram.read(addr.bits(0,12), data); } auto SDD1::mcuramWrite(uint24 addr, uint8 data) -> void { return ram.write(addr.bits(0,12), data); } }