#ifdef SA1_CPP uint8 SA1::bus_read(unsigned addr) { if((addr & 0x40fe00) == 0x002200) { //$00-3f|80-bf:2200-23ff return mmio_read(addr); } if((addr & 0x408000) == 0x008000) { //$00-3f|80-bf:8000-ffff return mmcrom_read(addr); } if((addr & 0xc00000) == 0xc00000) { //$c0-ff:0000-ffff return mmcrom_read(addr); } if((addr & 0x40e000) == 0x006000) { //$00-3f|80-bf:6000-7fff return mmc_sa1_read(addr); } if((addr & 0x40f800) == 0x000000) { //$00-3f|80-bf:0000-07ff synchronize_cpu(); return iram.read(addr & 2047); } if((addr & 0x40f800) == 0x003000) { //$00-3f|80-bf:3000-37ff synchronize_cpu(); return iram.read(addr & 2047); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff synchronize_cpu(); return bwram.read(addr & (bwram.size() - 1)); } if((addr & 0xf00000) == 0x600000) { //$60-6f:0000-ffff synchronize_cpu(); return bitmap_read(addr & 0x0fffff); } //unmapped region return regs.mdr; } void SA1::bus_write(unsigned addr, uint8 data) { if((addr & 0x40fe00) == 0x002200) { //$00-3f|80-bf:2200-23ff return mmio_write(addr, data); } if((addr & 0x40e000) == 0x006000) { //$00-3f|80-bf:6000-7fff return mmc_sa1_write(addr, data); } if((addr & 0x40f800) == 0x000000) { //$00-3f|80-bf:0000-07ff synchronize_cpu(); return iram.write(addr & 2047, data); } if((addr & 0x40f800) == 0x003000) { //$00-3f|80-bf:3000-37ff synchronize_cpu(); return iram.write(addr & 2047, data); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff synchronize_cpu(); return bwram.write(addr & (bwram.size() - 1), data); } if((addr & 0xf00000) == 0x600000) { //$60-6f:0000-ffff synchronize_cpu(); return bitmap_write(addr & 0x0fffff, data); } } //$230c (VDPL), $230d (VDPH) use this bus to read variable-length data. //this is used both to keep VBR-reads from accessing MMIO registers, and //to avoid syncing the S-CPU and SA-1*; as both chips are able to access //these ports. uint8 SA1::vbr_read(unsigned addr) { if((addr & 0x408000) == 0x008000) { //$00-3f|80-bf:8000-ffff return mmcrom_read(addr); } if((addr & 0xc00000) == 0xc00000) { //$c0-ff:0000-ffff return mmcrom_read(addr); } if((addr & 0x40e000) == 0x006000) { //$00-3f|80-bf:6000-7fff return bwram.read(addr & (bwram.size() - 1)); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff return bwram.read(addr & (bwram.size() - 1)); } if((addr & 0x40f800) == 0x000000) { //$00-3f|80-bf:0000-07ff return iram.read(addr & 2047); } if((addr & 0x40f800) == 0x003000) { //$00-3f|80-bf:3000-37ff return iram.read(addr & 2047); } } //ROM, I-RAM and MMIO registers are accessed at ~10.74MHz (2 clock ticks) //BW-RAM is accessed at ~5.37MHz (4 clock ticks) //tick() == 2 clock ticks //note: bus conflict delays are not emulated at this time void SA1::op_io() { tick(); } uint8 SA1::op_read(unsigned addr) { tick(); if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick(); return bus_read(addr); } void SA1::op_write(unsigned addr, uint8 data) { tick(); if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick(); bus_write(addr, regs.mdr = data); } uint8 SA1::mmcrom_read(unsigned addr) { if((addr & 0xffffe0) == 0x00ffe0) { if(addr == 0xffea && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 0; if(addr == 0xffeb && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 8; if(addr == 0xffee && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 0; if(addr == 0xffef && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 8; } static auto read = [](unsigned addr) { return sa1.rom.read(bus.mirror(addr, sa1.rom.size())); }; if((addr & 0xe08000) == 0x008000) { //$00-1f:8000-ffff addr = ((addr & 0x1f0000) >> 1) | (addr & 0x007fff); if(mmio.cbmode == 0) return read(0x000000 | addr); return read((mmio.cb << 20) | addr); } if((addr & 0xe08000) == 0x208000) { //$20-3f:8000-ffff addr = ((addr & 0x1f0000) >> 1) | (addr & 0x007fff); if(mmio.dbmode == 0) return read(0x100000 | addr); return read((mmio.db << 20) | addr); } if((addr & 0xe08000) == 0x808000) { //$80-9f:8000-ffff addr = ((addr & 0x1f0000) >> 1) | (addr & 0x007fff); if(mmio.ebmode == 0) return read(0x200000 | addr); return read((mmio.eb << 20) | addr); } if((addr & 0xe08000) == 0xa08000) { //$a0-bf:8000-ffff addr = ((addr & 0x1f0000) >> 1) | (addr & 0x007fff); if(mmio.fbmode == 0) return read(0x300000 | addr); return read((mmio.fb << 20) | addr); } if((addr & 0xf00000) == 0xc00000) { //$c0-cf:0000-ffff return read((mmio.cb << 20) | (addr & 0x0fffff)); } if((addr & 0xf00000) == 0xd00000) { //$d0-df:0000-ffff return read((mmio.db << 20) | (addr & 0x0fffff)); } if((addr & 0xf00000) == 0xe00000) { //$e0-ef:0000-ffff return read((mmio.eb << 20) | (addr & 0x0fffff)); } if((addr & 0xf00000) == 0xf00000) { //$f0-ff:0000-ffff return read((mmio.fb << 20) | (addr & 0x0fffff)); } return 0x00; } void SA1::mmcrom_write(unsigned addr, uint8 data) { } uint8 SA1::mmcbwram_read(unsigned addr) { if((addr & 0x40e000) == 0x006000) { //$00-3f|80-bf:6000-7fff cpu.synchronize_coprocessors(); addr = bus.mirror(mmio.sbm * 0x2000 + (addr & 0x1fff), cpubwram.size()); return cpubwram.read(addr); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff return cpubwram.read(addr & 0x0fffff); } return cpu.regs.mdr; } void SA1::mmcbwram_write(unsigned addr, uint8 data) { if((addr & 0x40e000) == 0x006000) { //$00-3f|80-bf:6000-7fff cpu.synchronize_coprocessors(); addr = bus.mirror(mmio.sbm * 0x2000 + (addr & 0x1fff), cpubwram.size()); return cpubwram.write(addr, data); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff return cpubwram.write(addr & 0x0fffff, data); } } uint8 SA1::mmc_sa1_read(unsigned addr) { synchronize_cpu(); if(mmio.sw46 == 0) { //$40-43:0000-ffff x 32 projection addr = bus.mirror((mmio.cbm & 0x1f) * 0x2000 + (addr & 0x1fff), bwram.size()); return bwram.read(addr); } else { //$60-6f:0000-ffff x 128 projection addr = bus.mirror(mmio.cbm * 0x2000 + (addr & 0x1fff), 0x100000); return bitmap_read(addr); } } void SA1::mmc_sa1_write(unsigned addr, uint8 data) { synchronize_cpu(); if(mmio.sw46 == 0) { //$40-43:0000-ffff x 32 projection addr = bus.mirror((mmio.cbm & 0x1f) * 0x2000 + (addr & 0x1fff), bwram.size()); bwram.write(addr, data); } else { //$60-6f:0000-ffff x 128 projection addr = bus.mirror(mmio.cbm * 0x2000 + (addr & 0x1fff), 0x100000); bitmap_write(addr, data); } } uint8 SA1::bitmap_read(unsigned addr) { if(mmio.bbf == 0) { //4bpp unsigned shift = addr & 1; addr = (addr >> 1) & (bwram.size() - 1); switch(shift) { case 0: return (bwram.read(addr) >> 0) & 15; case 1: return (bwram.read(addr) >> 4) & 15; } } else { //2bpp unsigned shift = addr & 3; addr = (addr >> 2) & (bwram.size() - 1); switch(shift) { case 0: return (bwram.read(addr) >> 0) & 3; case 1: return (bwram.read(addr) >> 2) & 3; case 2: return (bwram.read(addr) >> 4) & 3; case 3: return (bwram.read(addr) >> 6) & 3; } } } void SA1::bitmap_write(unsigned addr, uint8 data) { if(mmio.bbf == 0) { //4bpp unsigned shift = addr & 1; addr = (addr >> 1) & (bwram.size() - 1); switch(shift) { case 0: data = (bwram.read(addr) & 0xf0) | ((data & 15) << 0); break; case 1: data = (bwram.read(addr) & 0x0f) | ((data & 15) << 4); break; } } else { //2bpp unsigned shift = addr & 3; addr = (addr >> 2) & (bwram.size() - 1); switch(shift) { case 0: data = (bwram.read(addr) & 0xfc) | ((data & 3) << 0); break; case 1: data = (bwram.read(addr) & 0xf3) | ((data & 3) << 2); break; case 2: data = (bwram.read(addr) & 0xcf) | ((data & 3) << 4); break; case 3: data = (bwram.read(addr) & 0x3f) | ((data & 3) << 6); break; } } bwram.write(addr, data); } #endif