auto SA1::busRead(uint24 addr, uint8 data) -> uint8 { if((addr & 0x40fe00) == 0x002200) { //$00-3f,80-bf:2200-23ff return readIO(addr, data); } if((addr & 0x408000) == 0x008000) { //$00-3f,80-bf:8000-ffff addr = ((addr & 0x800000) >> 2) | ((addr & 0x3f0000) >> 1) | (addr & 0x7fff); return mmcromRead(addr, data); } if((addr & 0xc00000) == 0xc00000) { //$c0-ff:0000-ffff return mmcromRead(addr, data); } if((addr & 0x40e000) == 0x006000) { //$00-3f,80-bf:6000-7fff return mmcSA1Read(addr, data); } if((addr & 0x40f800) == 0x000000) { //$00-3f,80-bf:0000-07ff synchronizeCPU(); return iram.read(addr & 2047, data); } if((addr & 0x40f800) == 0x003000) { //$00-3f,80-bf:3000-37ff synchronizeCPU(); return iram.read(addr & 2047, data); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff synchronizeCPU(); return bwram.read(addr & (bwram.size() - 1), data); } if((addr & 0xf00000) == 0x600000) { //$60-6f:0000-ffff synchronizeCPU(); return bitmapRead(addr & 0x0fffff, data); } //unmapped region return data; } auto SA1::busWrite(uint24 addr, uint8 data) -> void { if((addr & 0x40fe00) == 0x002200) { //$00-3f,80-bf:2200-23ff return writeIO(addr, data); } if((addr & 0x40e000) == 0x006000) { //$00-3f,80-bf:6000-7fff return mmcSA1Write(addr, data); } if((addr & 0x40f800) == 0x000000) { //$00-3f,80-bf:0000-07ff synchronizeCPU(); return iram.write(addr & 2047, data); } if((addr & 0x40f800) == 0x003000) { //$00-3f,80-bf:3000-37ff synchronizeCPU(); return iram.write(addr & 2047, data); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff synchronizeCPU(); return bwram.write(addr & (bwram.size() - 1), data); } if((addr & 0xf00000) == 0x600000) { //$60-6f:0000-ffff synchronizeCPU(); return bitmapWrite(addr & 0x0fffff, data); } } //$230c (VDPL), $230d (VDPH) use this bus to read variable-length data. //this is used both to keep VBR-reads from accessing MMIO registers, and //to avoid syncing the S-CPU and SA-1*; as both chips are able to access //these ports. auto SA1::vbrRead(uint24 addr, uint8 data) -> uint8 { if((addr & 0x408000) == 0x008000) { //$00-3f,80-bf:8000-ffff addr = ((addr & 0x800000) >> 2) | ((addr & 0x3f0000) >> 1) | (addr & 0x7fff); return mmcromRead(addr, data); } if((addr & 0xc00000) == 0xc00000) { //$c0-ff:0000-ffff return mmcromRead(addr, data); } if((addr & 0x40e000) == 0x006000) { //$00-3f,80-bf:6000-7fff return bwram.read(addr & (bwram.size() - 1), data); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff return bwram.read(addr & (bwram.size() - 1), data); } if((addr & 0x40f800) == 0x000000) { //$00-3f,80-bf:0000-07ff return iram.read(addr & 2047, data); } if((addr & 0x40f800) == 0x003000) { //$00-3f,80-bf:3000-37ff return iram.read(addr & 2047, data); } return 0x00; } //ROM, I-RAM and MMIO registers are accessed at ~10.74MHz (2 clock ticks) //BW-RAM is accessed at ~5.37MHz (4 clock ticks) //tick() == 2 clock ticks //note: bus conflict delays are not emulated at this time auto SA1::idle() -> void { tick(); } auto SA1::read(uint24 addr) -> uint8 { tick(); if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick(); return busRead(addr, r.mdr); } auto SA1::write(uint24 addr, uint8 data) -> void { tick(); if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick(); busWrite(addr, r.mdr = data); } //note: addresses are translated prior to invoking this function: //$00-3f,80-bf:8000-ffff mask=0x408000 => $00-3f:0000-ffff //$c0-ff:0000-ffff mask=0 auto SA1::mmcromRead(uint24 addr, uint8) -> uint8 { //reset vector overrides if((addr & 0xffffe0) == 0x007fe0) { //$00:ffe0-ffef if(addr == 0x7fea && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 0; if(addr == 0x7feb && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 8; if(addr == 0x7fee && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 0; if(addr == 0x7fef && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 8; } static auto read = [](uint addr) { return sa1.rom.read(bus.mirror(addr, sa1.rom.size())); }; bool lo = addr < 0x400000; //*bmode==0 only applies to $00-3f,80-bf:8000-ffff addr &= 0x3fffff; if(addr < 0x100000) { //$00-1f,8000-ffff; $c0-cf:0000-ffff if(lo && mmio.cbmode == 0) return read(addr); return read((mmio.cb << 20) | (addr & 0x0fffff)); } if(addr < 0x200000) { //$20-3f,8000-ffff; $d0-df:0000-ffff if(lo && mmio.dbmode == 0) return read(addr); return read((mmio.db << 20) | (addr & 0x0fffff)); } if(addr < 0x300000) { //$80-9f,8000-ffff; $e0-ef:0000-ffff if(lo && mmio.ebmode == 0) return read(addr); return read((mmio.eb << 20) | (addr & 0x0fffff)); } if(addr < 0x400000) { //$a0-bf,8000-ffff; $f0-ff:0000-ffff if(lo && mmio.fbmode == 0) return read(addr); return read((mmio.fb << 20) | (addr & 0x0fffff)); } return 0x00; } auto SA1::mmcromWrite(uint24 addr, uint8 data) -> void { } auto SA1::mmcbwramRead(uint24 addr, uint8 data) -> uint8 { if(addr < 0x2000) { //$00-3f,80-bf:6000-7fff cpu.synchronizeCoprocessors(); addr = bus.mirror(mmio.sbm * 0x2000 + (addr & 0x1fff), cpubwram.size()); return cpubwram.read(addr); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff return cpubwram.read(addr & 0x0fffff); } return data; } auto SA1::mmcbwramWrite(uint24 addr, uint8 data) -> void { if(addr < 0x2000) { //$00-3f,80-bf:6000-7fff cpu.synchronizeCoprocessors(); addr = bus.mirror(mmio.sbm * 0x2000 + (addr & 0x1fff), cpubwram.size()); return cpubwram.write(addr, data); } if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff return cpubwram.write(addr & 0x0fffff, data); } } auto SA1::mmcSA1Read(uint addr, uint8 data) -> uint8 { synchronizeCPU(); if(mmio.sw46 == 0) { //$40-43:0000-ffff x 32 projection addr = bus.mirror((mmio.cbm & 0x1f) * 0x2000 + (addr & 0x1fff), bwram.size()); return bwram.read(addr, data); } else { //$60-6f:0000-ffff x 128 projection addr = bus.mirror(mmio.cbm * 0x2000 + (addr & 0x1fff), 0x100000); return bitmapRead(addr, data); } } auto SA1::mmcSA1Write(uint addr, uint8 data) -> void { synchronizeCPU(); if(mmio.sw46 == 0) { //$40-43:0000-ffff x 32 projection addr = bus.mirror((mmio.cbm & 0x1f) * 0x2000 + (addr & 0x1fff), bwram.size()); bwram.write(addr, data); } else { //$60-6f:0000-ffff x 128 projection addr = bus.mirror(mmio.cbm * 0x2000 + (addr & 0x1fff), 0x100000); bitmapWrite(addr, data); } } auto SA1::bitmapRead(uint addr, uint8 data) -> uint8 { if(mmio.bbf == 0) { //4bpp uint shift = addr & 1; addr = (addr >> 1) & (bwram.size() - 1); switch(shift) { case 0: return (bwram.read(addr) >> 0) & 15; case 1: return (bwram.read(addr) >> 4) & 15; } } else { //2bpp uint shift = addr & 3; addr = (addr >> 2) & (bwram.size() - 1); switch(shift) { case 0: return (bwram.read(addr) >> 0) & 3; case 1: return (bwram.read(addr) >> 2) & 3; case 2: return (bwram.read(addr) >> 4) & 3; case 3: return (bwram.read(addr) >> 6) & 3; } } } auto SA1::bitmapWrite(uint addr, uint8 data) -> void { if(mmio.bbf == 0) { //4bpp uint shift = addr & 1; addr = (addr >> 1) & (bwram.size() - 1); switch(shift) { case 0: data = (bwram.read(addr) & 0xf0) | ((data & 15) << 0); break; case 1: data = (bwram.read(addr) & 0x0f) | ((data & 15) << 4); break; } } else { //2bpp uint shift = addr & 3; addr = (addr >> 2) & (bwram.size() - 1); switch(shift) { case 0: data = (bwram.read(addr) & 0xfc) | ((data & 3) << 0); break; case 1: data = (bwram.read(addr) & 0xf3) | ((data & 3) << 2); break; case 2: data = (bwram.read(addr) & 0xcf) | ((data & 3) << 4); break; case 3: data = (bwram.read(addr) & 0x3f) | ((data & 3) << 6); break; } } bwram.write(addr, data); }