auto CPU::dmaCounter() const -> uint { return (status.dma_counter + hcounter()) & 7; } auto CPU::addClocks(uint clocks) -> void { status.irq_lock = false; uint ticks = clocks >> 1; while(ticks--) { tick(); if(hcounter() & 2) pollInterrupts(); } step(clocks); status.auto_joypad_clock += clocks; if(status.auto_joypad_clock >= 256) { status.auto_joypad_clock -= 256; stepAutoJoypadPoll(); } if(!status.dram_refreshed && hcounter() >= status.dram_refresh_position) { status.dram_refreshed = true; addClocks(40); } #if defined(DEBUGGER) synchronizeSMP(); synchronizePPU(); synchronizeCoprocessors(); #endif } //called by ppu.tick() when Hcounter=0 auto CPU::scanline() -> void { status.dma_counter = (status.dma_counter + status.line_clocks) & 7; status.line_clocks = lineclocks(); //forcefully sync S-CPU to other processors, in case chips are not communicating synchronizeSMP(); synchronizePPU(); synchronizeCoprocessors(); if(vcounter() == 0) { //HDMA init triggers once every frame status.hdma_init_position = (cpu_version == 1 ? 12 + 8 - dmaCounter() : 12 + dmaCounter()); status.hdma_init_triggered = false; status.auto_joypad_counter = 0; } //DRAM refresh occurs once every scanline if(cpu_version == 2) status.dram_refresh_position = 530 + 8 - dmaCounter(); status.dram_refreshed = false; //HDMA triggers once every visible scanline if(vcounter() <= (ppu.overscan() == false ? 224 : 239)) { status.hdma_position = 1104; status.hdma_triggered = false; } } auto CPU::aluEdge() -> void { if(alu.mpyctr) { alu.mpyctr--; if(status.rddiv & 1) status.rdmpy += alu.shift; status.rddiv >>= 1; alu.shift <<= 1; } if(alu.divctr) { alu.divctr--; status.rddiv <<= 1; alu.shift >>= 1; if(status.rdmpy >= alu.shift) { status.rdmpy -= alu.shift; status.rddiv |= 1; } } } auto CPU::dmaEdge() -> void { //H/DMA pending && DMA inactive? //.. Run one full CPU cycle //.. HDMA pending && HDMA enabled ? DMA sync + HDMA run //.. DMA pending && DMA enabled ? DMA sync + DMA run //.... HDMA during DMA && HDMA enabled ? DMA sync + HDMA run //.. Run one bus CPU cycle //.. CPU sync if(status.dma_active == true) { if(status.hdma_pending) { status.hdma_pending = false; if(hdmaEnabledChannels()) { if(!dmaEnabledChannels()) { dmaAddClocks(8 - dmaCounter()); } status.hdma_mode == 0 ? hdmaInit() : hdmaRun(); if(!dmaEnabledChannels()) { addClocks(status.clock_count - (status.dma_clocks % status.clock_count)); status.dma_active = false; } } } if(status.dma_pending) { status.dma_pending = false; if(dmaEnabledChannels()) { dmaAddClocks(8 - dmaCounter()); dmaRun(); addClocks(status.clock_count - (status.dma_clocks % status.clock_count)); status.dma_active = false; } } } if(status.hdma_init_triggered == false && hcounter() >= status.hdma_init_position) { status.hdma_init_triggered = true; hdmaInitReset(); if(hdmaEnabledChannels()) { status.hdma_pending = true; status.hdma_mode = 0; } } if(status.hdma_triggered == false && hcounter() >= status.hdma_position) { status.hdma_triggered = true; if(hdmaActiveChannels()) { status.hdma_pending = true; status.hdma_mode = 1; } } if(status.dma_active == false) { if(status.dma_pending || status.hdma_pending) { status.dma_clocks = 0; status.dma_active = true; } } } //used to test for NMI/IRQ, which can trigger on the edge of every opcode. //test one cycle early to simulate two-stage pipeline of x816 CPU. // //status.irq_lock is used to simulate hardware delay before interrupts can //trigger during certain events (immediately after DMA, writes to $4200, etc) auto CPU::lastCycle() -> void { if(!status.irq_lock) { status.nmi_pending |= nmiTest(); status.irq_pending |= irqTest(); status.interrupt_pending = (status.nmi_pending || status.irq_pending); } }