#pragma once struct ResampleAverage : Resampler { ResampleAverage(DSP& dsp) : Resampler(dsp) {} inline auto setFrequency() -> void; inline auto clear() -> void; inline auto sample() -> void; inline auto sampleLinear() -> void; private: double fraction; double step; }; auto ResampleAverage::setFrequency() -> void { fraction = 0.0; step = dsp.settings.frequency / frequency; } auto ResampleAverage::clear() -> void { fraction = 0.0; } auto ResampleAverage::sample() -> void { //can only average if input frequency >= output frequency if(step < 1.0) return sampleLinear(); fraction += 1.0; double scalar = 1.0; if(fraction > step) scalar = 1.0 - (fraction - step); for(auto c : range(dsp.settings.channels)) { dsp.output.write(c) += dsp.buffer.read(c) * scalar; } if(fraction >= step) { for(auto c : range(dsp.settings.channels)) { dsp.output.write(c) /= step; } dsp.output.wroffset++; fraction -= step; for(auto c : range(dsp.settings.channels)) { dsp.output.write(c) = dsp.buffer.read(c) * fraction; } } dsp.buffer.rdoffset++; } auto ResampleAverage::sampleLinear() -> void { while(fraction <= 1.0) { double channel[dsp.settings.channels]; for(auto n : range(dsp.settings.channels)) { double a = dsp.buffer.read(n, -1); double b = dsp.buffer.read(n, -0); double mu = fraction; channel[n] = a * (1.0 - mu) + b * mu; } dsp.write(channel); fraction += step; } dsp.buffer.rdoffset++; fraction -= 1.0; }