#version 150 // This is a port of the NTSC encode/decode shader pair in MAME and MESS, modified to use only // one pass rather than an encode pass and a decode pass. It accurately emulates the sort of // signal decimation one would see when viewing a composite signal, though it could benefit from a // pre-pass to re-size the input content to more accurately reflect the actual size that would // be incoming from a composite signal source. // // To encode the composite signal, I convert the RGB value to YIQ, then subsequently evaluate // the standard NTSC composite equation. Four composite samples per RGB pixel are generated from // the incoming linearly-interpolated texels. // // The decode pass implements a Fixed Impulse Response (FIR) filter designed by MAME/MESS contributor // "austere" in matlab (if memory serves correctly) to mimic the behavior of a standard television set // as closely as possible. The filter window is 83 composite samples wide, and there is an additional // notch filter pass on the luminance (Y) values in order to strip the color signal from the luminance // signal prior to processing. // // Yes, this code could greatly use some cleaning up. // ported from UltraMoogleMan's "Full MAME/MESS Shader Pipe" shadertoy: https://www.shadertoy.com/view/ldf3Rf // license: presumably MAME's license at the time, which was noncommercial #define scanlines 0.0 #define scandark 0.175 #define deconverge 0.0 #define pincushion 0.0 #define hertzroll 0.0 // Useful Constants const vec4 Zero = vec4(0.0); const vec4 Half = vec4(0.5); const vec4 One = vec4(1.0); const vec4 Two = vec4(2.0); const vec3 Gray = vec3(0.3, 0.59, 0.11); const float Pi = 3.1415926535; const float Pi2 = 6.283185307; // NTSC Constants const vec4 A = vec4(0.5); const vec4 A2 = vec4(1.0); const vec4 B = vec4(0.5); const float P = 1.0; const float CCFrequency = 3.59754545; const float NotchUpperFrequency = 5.59754545; //3.59754545 + 2.0; const float NotchLowerFrequency = 1.59754545; //3.59754545 - 2.0; const float YFrequency = 6.0; const float IFrequency = 1.2; const float QFrequency = 0.6; const float NotchHalfWidth = 2.0; const float ScanTime = 52.6; const float Pi2ScanTime = 330.4955471482;// 6.283185307 * 52.6; const float MaxC = 2.1183; const vec4 YTransform = vec4(0.299, 0.587, 0.114, 0.0); const vec4 ITransform = vec4(0.595716, -0.274453, -0.321263, 0.0); const vec4 QTransform = vec4(0.211456, -0.522591, 0.311135, 0.0); const vec3 YIQ2R = vec3(1.0, 0.956, 0.621); const vec3 YIQ2G = vec3(1.0, -0.272, -0.647); const vec3 YIQ2B = vec3(1.0, -1.106, 1.703); const vec4 MinC = vec4(-1.1183); const vec4 CRange = vec4(3.2366); const vec4 InvCRange = vec4(1.0/3.2366); const float Pi2Length = Pi2 / 63.0; const vec4 NotchOffset = vec4(0.0, 1.0, 2.0, 3.0); vec4 W = vec4(Pi2 * CCFrequency * ScanTime); // Color Convolution Constants const vec3 RedMatrix = vec3(1.0, 0.0, 0.0); const vec3 GrnMatrix = vec3(0.0, 1.0, 0.0); const vec3 BluMatrix = vec3(0.0, 0.0, 1.0); const vec3 DCOffset = vec3(0.0, 0.0, 0.0); const vec3 ColorScale = vec3(0.95, 0.95, 0.95); const float Saturation = 1.4; // Deconverge Constants const vec3 ConvergeX = vec3(-0.4, 0.0, 0.2); const vec3 ConvergeY = vec3( 0.0, -0.4, 0.2); const vec3 RadialConvergeX = vec3(1.0, 1.0, 1.0); const vec3 RadialConvergeY = vec3(1.0, 1.0, 1.0); // Scanline/Pincushion Constants const float PincushionAmount = 0.015; const float CurvatureAmount = 0.015; //const float ScanlineAmount = 0.175; <- move to parameter const float ScanlineScale = 1.0; const float ScanlineHeight = 1.0; const float ScanlineBrightScale = 1.0; const float ScanlineBrightOffset = 0.0; const float ScanlineOffset = 0.0; const vec3 Floor = vec3(0.05, 0.05, 0.05); // 60Hz Bar Constants const float SixtyHertzRate = (60.0 / 59.97 - 1.0); // Difference between NTSC and line frequency const float SixtyHertzScale = 0.1; uniform sampler2D source[]; uniform vec4 sourceSize[]; uniform vec4 targetSize; uniform int phase; in Vertex { vec2 vTexCoord; }; out vec4 FragColor; vec4 ColorConvolution(vec2 UV, vec2 InverseRes) { vec3 InPixel = texture(source[0], UV).rgb; // Color Matrix float RedValue = dot(InPixel, RedMatrix); float GrnValue = dot(InPixel, GrnMatrix); float BluValue = dot(InPixel, BluMatrix); vec3 OutColor = vec3(RedValue, GrnValue, BluValue); // DC Offset & Scale OutColor = (OutColor * ColorScale) + DCOffset; // Saturation float Luma = dot(OutColor, Gray); vec3 Chroma = OutColor - Luma; OutColor = (Chroma * Saturation) + Luma; return vec4(OutColor, 1.0); } vec4 Deconverge(vec2 UV) { vec2 InverseRes = 1.0 / sourceSize[0].xy; vec2 InverseSrcRes = 1.0 / sourceSize[0].xy; vec3 CoordX = UV.x * RadialConvergeX; vec3 CoordY = UV.y * RadialConvergeY; CoordX += ConvergeX * InverseRes.x - (RadialConvergeX - 1.0) * 0.5; CoordY += ConvergeY * InverseRes.y - (RadialConvergeY - 1.0) * 0.5; float RedValue = ColorConvolution(vec2(CoordX.x, CoordY.x), InverseSrcRes).r; float GrnValue = ColorConvolution(vec2(CoordX.y, CoordY.y), InverseSrcRes).g; float BluValue = ColorConvolution(vec2(CoordX.z, CoordY.z), InverseSrcRes).b; if (deconverge > 0.5) return vec4(RedValue, GrnValue, BluValue, 1.0); else return vec4(texture(source[0], UV)); } vec4 ScanlinePincushion(vec2 UV) { vec4 InTexel = Deconverge(UV); vec2 PinUnitCoord = UV * Two.xy - One.xy; float PincushionR2 = pow(length(PinUnitCoord), 2.0); vec2 PincushionCurve = PinUnitCoord * PincushionAmount * PincushionR2; vec2 BaseCoord = UV; vec2 ScanCoord = UV; BaseCoord *= One.xy - PincushionAmount * 0.2; // Warning: Magic constant BaseCoord += PincushionAmount * 0.1; BaseCoord += PincushionCurve; ScanCoord *= One.xy - PincushionAmount * 0.2; // Warning: Magic constant ScanCoord += PincushionAmount * 0.1; ScanCoord += PincushionCurve; vec2 CurveClipUnitCoord = UV * Two.xy - One.xy; float CurvatureClipR2 = pow(length(CurveClipUnitCoord), 2.0); vec2 CurvatureClipCurve = CurveClipUnitCoord * CurvatureAmount * CurvatureClipR2; vec2 ScreenClipCoord = UV; ScreenClipCoord -= Half.xy; ScreenClipCoord *= One.xy - CurvatureAmount * 0.2; // Warning: Magic constant ScreenClipCoord += Half.xy; ScreenClipCoord += CurvatureClipCurve; if (pincushion > 0.5){ // -- Alpha Clipping -- if (BaseCoord.x < 0.0) return vec4(0.0, 0.0, 0.0, 1.0); if (BaseCoord.y < 0.0) return vec4(0.0, 0.0, 0.0, 1.0); if (BaseCoord.x > 1.0) return vec4(0.0, 0.0, 0.0, 1.0); if (BaseCoord.y > 1.0) return vec4(0.0, 0.0, 0.0, 1.0); } // -- Scanline Simulation -- float InnerSine = ScanCoord.y * sourceSize[0].y * ScanlineScale; float ScanBrightMod = sin(InnerSine * Pi + ScanlineOffset * sourceSize[0].y); float ScanBrightness = mix(1.0, (pow(ScanBrightMod * ScanBrightMod, ScanlineHeight) * ScanlineBrightScale + 1.0) * 0.5, scandark); vec3 ScanlineTexel = InTexel.rgb * ScanBrightness; // -- Color Compression (increasing the floor of the signal without affecting the ceiling) -- ScanlineTexel = Floor + (One.xyz - Floor) * ScanlineTexel; if (scanlines > 0.5) return vec4(ScanlineTexel, 1.0); else return vec4(InTexel); } vec4 SixtyHertz(vec2 UV) { vec4 InPixel = ScanlinePincushion(UV); float Milliseconds = float(phase) * 15.0; float TimeStep = fract(Milliseconds * SixtyHertzRate); float BarPosition = 1.0 - fract(-UV.y + TimeStep) * SixtyHertzScale; vec4 OutPixel = InPixel * BarPosition; if (hertzroll > 0.5) return OutPixel; else return InPixel; } void main() { vec4 OutPixel = SixtyHertz(vTexCoord.xy); FragColor = OutPixel; }