#ifdef NALL_DSP_INTERNAL_HPP struct ResampleAverage : Resampler { inline void setFrequency(); inline void clear(); inline void sample(); inline void sampleLinear(); ResampleAverage(DSP& dsp) : Resampler(dsp) {} real fraction; real step; }; void ResampleAverage::setFrequency() { fraction = 0.0; step = dsp.settings.frequency / frequency; } void ResampleAverage::clear() { fraction = 0.0; } void ResampleAverage::sample() { //can only average if input frequency >= output frequency if(step < 1.0) return sampleLinear(); fraction += 1.0; real scalar = 1.0; if(fraction > step) scalar = 1.0 - (fraction - step); for(unsigned c = 0; c < dsp.settings.channels; c++) { dsp.output.write(c) += dsp.buffer.read(c) * scalar; } if(fraction >= step) { for(unsigned c = 0; c < dsp.settings.channels; c++) { dsp.output.write(c) /= step; } dsp.output.wroffset++; fraction -= step; for(unsigned c = 0; c < dsp.settings.channels; c++) { dsp.output.write(c) = dsp.buffer.read(c) * fraction; } } dsp.buffer.rdoffset++; } void ResampleAverage::sampleLinear() { while(fraction <= 1.0) { real channel[dsp.settings.channels]; for(unsigned n = 0; n < dsp.settings.channels; n++) { real a = dsp.buffer.read(n, -1); real b = dsp.buffer.read(n, -0); real mu = fraction; channel[n] = a * (1.0 - mu) + b * mu; } dsp.write(channel); fraction += step; } dsp.buffer.rdoffset++; fraction -= 1.0; } #endif