byuu says:
First 32 instructions implemented in the TLCS900H disassembler. Only 992
to go!
I removed the use of anonymous namespaces in nall. It was something I
rarely used, because it rarely did what I wanted.
I updated all nested namespaces to use C++17-style namespace Foo::Bar {}
syntax instead of classic C++-style namespace Foo { namespace Bar {}}.
I updated ruby::Video::acquire() to return a struct, so we can use C++17
structured bindings. Long term, I want to get away from all functions
that take references for output only. Even though C++ botched structured
bindings by not allowing you to bind to existing variables, it's even
worse to have function calls that take arguments by reference and then
write to them. From the caller side, you can't tell the value is being
written, nor that the value passed in doesn't matter, which is terrible.
byuu says:
This is probably the largest code-change diff I've done in years.
I spent four days working 10-16 hours a day reworking layouts in hiro
completely.
The result is we now have TableLayout, which will allow for better
horizontal+vertical combined alignment.
Windows, GTK2, and now GTK3 are fully supported.
Windows is getting the initial window geometry wrong by a bit.
GTK2 and GTK3 work perfectly. I basically abandoned trying to detect
resize signals, and instead keep a list of all hiro windows that are
allocated, and every time the main loop runs, it will query all of them
to see if they've been resized. I'm disgusted that I have to do this,
but after fighting with GTK for years, I'm about sick of it. GTK was
doing this crazy thing where it would trigger another size-allocate
inside of a previous size-allocate, and so my layouts would be halfway
through resizing all the widgets, and then the size-allocate would kick
off another one. That would end up leaving the rest of the first layout
loop with bad widget sizes. And if I detected a second re-entry and
blocked it, then the entire window would end up with the older geometry.
I started trying to build a message queue system to allow the second
layout resize to occur after the first one completed, but this was just
too much madness, so I went with the simpler solution.
Qt4 has some geometry problems, and doesn't show tab frame layouts
properly yet.
Qt5 causes an ICE error and tanks my entire Xorg display server, so ...
something is seriously wrong there, and it's not hiro's fault. Creating
a dummy Qt5 application without even using hiro, just int main() {
TestObject object; } with object performing a dynamic\_cast to a derived
type segfaults. Memory is getting corrupted where GCC allocates the
vtables for classes, just by linking in Qt. Could be somehow related to
the -fPIC requirement that only Qt5 has ... could just be that FreeBSD
10.1 has a buggy implementation of Qt5. I don't know. It's beyond my
ability to debug, so this one's going to stay broken.
The Cocoa port is busted. I'll fix it up to compile again, but that's
about all I'm going to do.
Many optimizations mean bsnes and higan open faster. GTK2 and GTK3 both
resize windows very quickly now.
higan crashes when you load a game, so that's not good. bsnes works
though.
bsnes also has the start of a localization engine now. Still a long way
to go.
The makefiles received a rather substantial restructuring. Including the
ruby and hiro makefiles will add the necessary compilation rules for
you, which also means that moc will run for the qt4 and qt5 targets, and
windres will run for the Windows targets.
byuu says:
Changelog:
- Emulator: use `(uintmax)-1 >> 1` for the units of time
- MD: implemented 13 new 68K instructions (basically all of the
remaining easy ones); 21 remain
- nall: replaced `(u)intmax_t` (64-bit) with *actual* `(u)intmax` type
(128-bit where available)
- this extends to everything: atoi, string, etc. You can even
print 128-bit variables if you like
22,552 opcodes still don't exist in the 68K map. Looking like quite a
few entries will be blank once I finish.
byuu says:
Changelog:
- (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel
like they were contributing enough to be worth it]
- cleaned up nall::integer,natural,real functionality
- toInteger, toNatural, toReal for parsing strings to numbers
- fromInteger, fromNatural, fromReal for creating strings from numbers
- (string,Markup::Node,SQL-based-classes)::(integer,natural,real)
left unchanged
- template<typename T> numeral(T value, long padding, char padchar)
-> string for print() formatting
- deduces integer,natural,real based on T ... cast the value if you
want to override
- there still exists binary,octal,hex,pointer for explicit print()
formatting
- lstring -> string_vector [but using lstring = string_vector; is
declared]
- would be nice to remove the using lstring eventually ... but that'd
probably require 10,000 lines of changes >_>
- format -> string_format [no using here; format was too ambiguous]
- using integer = Integer<sizeof(int)*8>; and using natural =
Natural<sizeof(uint)*8>; declared
- for consistency with boolean. These three are meant for creating
zero-initialized values implicitly (various uses)
- R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees
up struct IO {} io; naming]
- SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {}
(status,registers); now
- still some CPU::Status status values ... they didn't really fit into
IO functionality ... will have to think about this more
- SFC CPU, PPU, SMP now use step() exclusively instead of addClocks()
calling into step()
- SFC CPU joypad1_bits, joypad2_bits were unused; killed them
- SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it
- SFC PPU OAM moved into PPU::Object; since nothing else uses it
- the raw uint8[544] array is gone. OAM::read() constructs values from
the OAM::Object[512] table now
- this avoids having to determine how we want to sub-divide the two
OAM memory sections
- this also eliminates the OAM::synchronize() functionality
- probably more I'm forgetting
The FPS fluctuations are driving me insane. This WIP went from 128fps to
137fps. Settled on 133.5fps for the final build. But nothing I changed
should have affected performance at all. This level of fluctuation makes
it damn near impossible to know whether I'm speeding things up or slowing
things down with changes.
byuu says:
Changelog:
- Super Famicom core converted to use nall/vfs
- excludes Super Game Boy; since that's invoked from inside the GB core
This was definitely the major obstacle to test nall/vfs'
applicability. Things worked out pretty great in the end.
We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB
(cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes
a very large source of indirection. Before it was: "coprocessor <=>
cartridge <=> interface" for loading and saving data, and now it's just
"coprocessor <=> cartridge". And it may make sense to eventually turn
this into just "cartridge -> coprocessor" by making each coprocessor
class handle its own markup parsing.
It's nice to have all the manifest parsing in one location (well, sans
MSU1); but it's also nice for loading/unloading to be handled by each
coprocessor itself. So I'll have to think longer about that one.
I've also started handling Interface::save() differently. Instead of
keeping track of memory IDs and filenames, and iterating through that
vector of objects ... instead I now have a system that mirrors the markup
parsing on loading, but handles saving instead. This was actually the
reason the code size savings weren't more significant, but I like this
style more. As before, it removes an extra level of indirection.
So ... next up, I need to port over the GB, then GBA, then WS
cores. These shouldn't take too long since they're all very simple with
just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then
after that, gut all the old stream stuff from nall and higan. Kill the
(load,save)Request stuff, rename the load(Gamepak)Request to something
simpler, and then we should be good.
Anyway ... these are some huge changes.