mirror of https://github.com/bsnes-emu/bsnes.git
17 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Tim Allen | 6e8406291c |
Update to v102r24 release.
byuu says Changelog: - FC: fixed three MOS6502 regressions [hex\_usr] - GBA: return fetched instruction instead of 0 for unmapped MMIO (passes all of endrift's I/O tests) - MD: fix VDP control port read Vblank bit to test screen height instead of hard-code 240 (fixes Phantasy Star IV) - MD: swap USP,SSP when executing an exception (allows Super Street Fighter II to run; but no sprites visible yet) - MD: grant 68K access to Z80 bus on reset (fixes vdpdoc demo ROM from freezing immediately) - SFC: reads from $00-3f,80-bf:4000-43ff no longer update MDR [p4plus2] - SFC: massive, eight-hour cleanup of WDC65816 CPU core ... still not complete The big change this time around is the SFC CPU core. I've renamed everything from R65816 to WDC65816, and then went through and tried to clean up the code as much as possible. This core is so much larger than the 6502 core that I chose cleaning up the code to rewriting it. First off, I really don't care for the BitRange style functionality. It was an interesting experiment, but its fatal flaw are that the types are just bizarre, which makes them hard to pass around generically to other functions as arguments. So I went back to the list of bools for flags, and union/struct blocks for the registers. Next, I renamed all of the functions to be more descriptive: eg `op_read_idpx_w` becomes `instructionIndexedIndirectRead16`. `op_adc_b` becomes `algorithmADC8`. And so forth. I eliminated about ten instructions because they were functionally identical sans the index, so I just added a uint index=0 parameter to said functions. I added a few new ones (adjust→INC,DEC; pflag→REP,SEP) where it seemed appropriate. I cleaned up the disaster of the instruction switch table into something a whole lot more elegant without all the weird argument decoding nonsense (still need M vs X variants to avoid having to have 4-5 separate switch tables, but all the F/I flags are gone now); and made some things saner, like the flag clear/set and branch conditions, now that I have normal types for flags and registers once again. I renamed all of the memory access functions to be more descriptive to what they're doing: eg writeSP→push, readPC→fetch, writeDP→writeDirect, etc. Eliminated some of the special read/write modes that were only used in one single instruction. I started to clean up some of the actual instructions themselves, but haven't really accomplished much here. The big thing I want to do is get rid of the global state (aa, rd, iaddr, etc) and instead use local variables like I am doing with my other 65xx CPU cores now. But this will take some time ... the algorithm functions depend on rd to be set to work on them, rather than taking arguments. So I'll need to rework that. And then lastly, the disassembler is still a mess. I want to finish the CPU cleanups, and then post a new WIP, and then rewrite the disassembler after that. The reason being ... I want a WIP that can generate identical trace logs to older versions, in case the CPU cleanup causes any regressions. That way I can more easily spot the errors. Oh ... and a bit of good news. v102 was running at ~140fps on the SNES core. With the new support to suspend/resume WAI/STP, plus the internal CPU registers not updating the MDR, the framerate dropped to ~132fps. But with the CPU cleanups, performance went back to ~140fps. So, hooray. Of course, without those two other improvements, we'd have ended up at possibly ~146-148fps, but oh well. |
|
Tim Allen | a4629e1f64 |
Update to v102r21 release.
byuu says: Changelog: - GBA: fixed WININ2 reads, BG3PB writes [Jonas Quinn] - R65816: added support for yielding/resuming from WAI/STP¹ - SFC: removed status.dmaCounter functionality (also fixes possible TAS desync issue) - tomoko: added support for combinatorial inputs [hex\_usr\]² - nall: fixed missing return value from Arithmetic::operator-- [Hendricks266] Now would be the time to start looking for major regressions with the new GBA PPU renderer, I suppose ... ¹: this doesn't matter for the master thread (SNES CPU), but is important for slave threads (SNES SA1). If you try to save a state and the SA1 is inside of a WAI instruction, it will get stuck there forever. This was causing attempts to create a save state in Super Bomberman - Panic Bomber W to deadlock the emulator and crash it. This is now finally fixed. Note that I still need to implement similar functionality into the Mega Drive 68K and Z80 cores. They still have the possibility of deadlocking. The SNES implementation was more a dry-run test for this new functionality. This possible crashing bug in the Mega Drive core is the major blocking bug for a new official release. ²: many, many thanks to hex\_usr for coming up with a really nice design. I mostly implemented it the exact same way, but with a few tiny differences that don't really matter (display " and ", " or " instead of " & ", " | " in the input settings windows; append → bind; assignmentName changed to displayName.) The actual functionality is identical to the old higan v094 and earlier builds. Emulated digital inputs let you combine multiple possible keys to trigger the buttons. This is OR logic, so you can map to eg keyboard.up OR gamepad.up for instance. Emulated analog inputs always sum together. Emulated rumble outputs will cause all mapped devices to rumble, which is probably not at all useful but whatever. Hotkeys use AND logic, so you have to press every key mapped to trigger them. Useful for eg Ctrl+F to trigger fullscreen. Obviously, there are cases where OR logic would be nice for hotkeys, too. Eg if you want both F11 and your gamepad's guide button to trigger the fullscreen toggle. Unfortunately, this isn't supported, and likely won't ever be in tomoko. Something I might consider is a throw switch in the configuration file to swap between AND or OR logic for hotkeys, but I'm not going to allow construction of mappings like "(Keyboard.Ctrl and Keyboard.F) or Gamepad.Guide", as that's just too complicated to code, and too complicated to make a nice GUI to set up the mappings for. |
|
Tim Allen | 3bcf3c24c9 |
Update to v102r20 release.
byuu says: Changelog: - nall: `#undef OUT` on Windows platform - GBA: add missing CPU prefetch state to serialization (this was breaking serialization in games using ROM prefetch) - GBA: reset all PPU data in the power() function (some things were missing before, causing issues on reset) - GBA: restored horizontal mosaic emulation to the new pixel-based renderer - GBA: fixed tilemap background horizontal flipping (Legend of Spyro - warning screen) - GBA: fixed d8 bits of scroll registers (ATV - Thunder Ridge Racers - menu screen) - SFC: DRAM refresh ticks the ALU MUL/DIV registers five steps forward [reported by kevtris] - SFC: merged dmaCounter and autoJoypadCounter into new shared clockCounter - left stub for old dmaCounter so that I can do some traces to ensure the new code's 100% identical GBA save states would have been broken since whenever I emulated ROM prefetch. I guess not many people are using the GBA core ... |
|
Tim Allen | 2461293ff0 |
Update to v102r19 release.
byuu says: Note: add `#undef OUT` to the top of higan/gba/ppu/ppu.hpp to compile on Windows (ugh ...) Now to await posts about this in four more threads again ;) Changelog: - GBA: rewrote PPU from a scanline-based renderer to a pixel-based renderer - ruby: fixed video/gdi bugs Note that there's an approximately 21% speed penalty compared to v102r18 for the pixel-based renderer. Also, horizontal mosaic effects are not yet implemented. But they should be prior to v103. This one is a little tricky as it currently works on fully rendered scanlines. I need to roll the mosaic into the background renderers, and then for sprites, well ... see below. The trickiest part by far of this new renderer is the object (sprite) system. Unlike every other system I emulate, the GBA supports affine rendering of its sprites. Or in other words, rotation effects. And it also has a very complex priority system. Right now, I can't see any way that the GBA PPU could render pixels in real-time like this. My belief is that there's a 240-entry buffer that fills up the next scanline's row of pixels. Which means it probably also runs on the last scanline of Vblank so that the first scanline has sprite data. However, I didn't design my object renderer like this just yet. For now, it creates a buffer of all 240 pixels right away at the start of the scanline. I know\!\! That's technically scanline-based. But it's only for fetching object tiledata, and it's only temporary. What needs to happen is I need a way to run something like a "mini libco thread" inside of the main thread, so that the object renderer can run in parallel with the rest of the PPU, yet not be a hideous abomination of a state machine, yet also not be horrendously slow as a full libco thread would be. I'm envisioning some kind of stackless yielding coroutine. But I'll need to think through how to design that, given the absence of coroutines even in C++17. |
|
Tim Allen | ca277cd5e8 |
Update to v100r14 release.
byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP. |
|
Tim Allen | 67457fade4 |
Update to v099r13 release.
byuu says: Changelog: - GB core code cleanup completed - GBA core code cleanup completed - some more cleanup on missed processor/arm functions/variables - fixed FC loading icarus bug - "Load ROM File" icarus functionality restored - minor code unification efforts all around (not perfect yet) - MMIO->IO - mmio.cpp->io.cpp - read,write->readIO,writeIO It's been a very long work in progress ... starting all the way back with v094r09, but the major part of the higan code cleanup is now completed! Of course, it's very important to note that this is only for the basic style: - under_score functions and variables are now camelCase - return-type function-name() are now auto function-name() -> return-type - Natural<T>/Integer<T> replace (u)intT_n types where possible - signed/unsigned are now int/uint - most of the x==true,x==false tests changed to x,!x A lot of spot improvements to consistency, simplicity and quality have gone in along the way, of course. But we'll probably never fully finishing beautifying every last line of code in the entire codebase. Still, this is a really great start. Going forward, WIP diffs should start being smaller and of higher quality once again. I know the joke is, "until my coding style changes again", but ... this was way too stressful, way too time consuming, and way too risky. I'm too old and tired now for extreme upheavel like this again. The only major change I'm slowly mulling over would be renaming the using Natural<T>/Integer<T> = (u)intT; shorthand to something that isn't as easily confused with the (u)int_t types ... but we'll see. I'll definitely continue to change small things all the time, but for the larger picture, I need to just accept the style I have and live with it. |
|
Tim Allen | e2ee6689a0 |
Update to v098r06 release.
byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad. |
|
Tim Allen | a2d3b8ba15 |
Update to v098r04 release.
byuu says: Changelog: - SFC: fixed behavior of 21fx $21fe register when no device is connected (must return zero) - SFC: reduced 21fx buffer size to 1024 bytes in both directions to mirror the FT232H we are using - SFC: eliminated dsp/modulo-array.hpp [1] - higan: implemented higan/video interface and migrated all cores to it [2] [1] the echo history buffer was 8-bytes, so there was no need for it at all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and has very weird behavior ... but there's only a single location in the code where it actually writes to this buffer. It's much easier to just write to the buffer three times there instead of implementing an entire class just to abstract away two lines of code. This change actually boosted the speed from ~124.5fps to around ~127.5fps, but that's within the margin of error for GCC. I doubt it's actually faster this way. The DSP core could really use a ton of work. It comes from a port of blargg's spc_dsp to my coding style, but he was extremely fond of using 32-bit signed integers everywhere. There's a lot of opportunity to remove red tape masking by resizing the variables to their actual state sizes. I really need to find where I put spc_dsp6.sfc from blargg. It's a great test to verify if I've made any mistakes in my implementation that would cause regressions. Don't suppose anyone has it? [2] so again, the idea is that higan/audio and higan/video are going to sit between the emulation cores and the user interfaces. The hope is to output raw encoding data from the emulation cores without having to worry about the video display format (generally 24-bit RGB) of the host display. And also to avoid having to repeat myself with eg three separate implementations of interframe blending, and so on. Furthermore, the idea is that the user interface can configure its side of the settings, and the emulation cores can configure their sides. Thus, neither has to worry about the other end. And now we can spin off new user interfaces much easier without having to mess with all of these things. Right now, I've implemented color emulation, interframe blending and SNES horizontal color bleed. I did not implement scanlines (and interlace effects for them) yet, but I probably will at some point. Further, for right now, the WonderSwan/Color screen rotation is busted and will only show games in the horizontal orientation. Obviously this must be fixed before the next official release, but I'll want to think about how to implement it. Also, the SNES light gun pointers are missing for now. Things are a bit messy right now as I've gone through several revisions of how to handle these things, so a good house cleaning is in order once everything is feature-complete again. I need to sit down and think through how and where I want to handle things like light gun cursors, LCD icons, and maybe even rasterized text messages. And obviously ... higan/audio is still just nall::DSP's headers. I need to revamp that whole interface. I want to make it quite powerful with a true audio mixer so I can handle things like SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.) The video system has the concept of "effects" for things like color bleed and interframe blending. I want to extend on this with useful other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x filter, etc. I'd also like to restore the saturation/gamma/luma adjustment sliders ... I always liked allowing people to compensate for their displays without having to change settings system-wide. Lastly, I've always wanted to see some audio effects. Although I doubt we'll ever get my dream of CoreAudio-style profiles, I'd like to get some basic equalizer settings and echo/reverb effects in there. |
|
Tim Allen | fc7d5991ce |
Update to v097r18 release.
byuu says: Changelog: - fixed SNES sprite priority regression from r17 - added nall/windows/guard.hpp to guard against global namespace pollution (similar to nall/xorg/guard.hpp) - almost fixed Windows compilation (still accuracy profile only, sorry) - finished porting all of gba/ppu's registers over to the new .bit,.bits format ... all GBA registers.cpp files gone now - the "processors :=" line in the target-$(ui)/GNUmakefile is no longer required - processors += added to each emulator core - duplicates are removed using the new nall/GNUmakefile's $(unique) function - SFC core can be compiled without the GB core now - "-DSFC_SUPERGAMEBOY" is required to build in SGB support now (it's set in target-tomoko/GNUmakefile) - started once again on loki (higan/target-loki/) [as before, loki is Linux/BSD only on account of needing hiro::Console] loki shouldn't be too horrendous ... I hope. I just have the base skeleton ready for now. But the code from v094r08 should be mostly copyable over to it. It's just that it's about 50KiB of incredibly tricky code that has to be just perfect, so it's not going to be quick. But at least with the skeleton, it'll be a lot easier to pick away at it as I want. Windows compilation fix: move hiro/windows/header.hpp line 18 (header guard) to line 16 instead. |
|
Tim Allen | 29be18ce0c |
Update to v097r17 release.
byuu says: Changelog: - ruby: if DirectSoundCreate fails (no sound device present), return false from init instead of crashing - nall: improved edge case return values for (basename,pathname,dirname,...) - nall: renamed file_system_object class to inode - nall: varuint_t replaced with VariadicNatural; which contains .bit,.bits,.byte ala Natural/Integer - nall: fixed boolean compilation error on Windows - WS: popa should not restore SP - GBA: rewrote the CPU/APU cores to use the .bit,.bits functions; removed registers.cpp from each Note that the GBA changes are extremely major. This is about five hours worth of extremely delicate work. Any slight errors could break emulation in extremely bad ways. Let's hold off on extensive testing until the next WIP, after I do the same to the PPU. So far ... endrift's SOUNDCNT_X I/O test is failing, although that code didn't change, so clearly I messed up SOUNDCNT_H somehow ... To compile on Windows: 1. change nall/string/platform.hpp line 47 to return slice(result, 0, 3); 2. change ruby/video.wgl.cpp line 72 to auto lock(uint32_t*& data, uint& pitch, uint width, uint height) -> bool { 3. add this line to the very top of hiro/windows/header.cpp: #define boolean FuckYouMicrosoft |
|
Tim Allen | ef65bb862a |
Update to 20160215 release.
byuu says: Got it. Wow, that didn't hurt nearly as much as I thought it was going to. Dropped from 127.5fps to 123.5fps to use Natural/Integer for (u)int(8,16,32,64). That's totally worth the cost. |
|
Tim Allen | 6c83329cae |
Update to v097r13 release.
byuu says: I refactored my schedulers. Added about ten lines to each scheduler, and removed about 100 lines of calling into internal state in the scheduler for the FC,SFC cores and about 30-40 lines for the other cores. All of its state is now private. Also reworked all of the entry points to static auto Enter() and auto main(). Where Enter() handles all the synchronization stuff, and main() doesn't need the while(true); loop forcing another layer of indentation everywhere. Took a few hours to do, but totally worth it. I'm surprised I didn't do this sooner. Also updated icarus gmake install rule to copy over the database. |
|
Tim Allen | 344e63d928 |
Update to v097r02 release.
byuu says: Note: balanced/performance profiles still broken, sorry. Changelog: - added nall/GNUmakefile unique() function; used on linking phase of higan - added nall/unique_pointer - target-tomoko and {System}::Video updated to use unique_pointer<ClassName> instead of ClassName* [1] - locate() updated to search multiple paths [2] - GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs - FC, GB, GBA: merge video/ into the PPU cores - ruby: fixed ~AudioXAudio2() typo [1] I expected this to cause new crashes on exit due to changing the order of destruction of objects (and deleting things that weren't deleted before), but ... so far, so good. I guess we'll see what crops up, especially on OS X (which is already crashing for unknown reasons on exit.) [2] right now, the search paths are: programpath(), {configpath(), "higan/"}, {localpath(), "higan/"}; but we can add as many more as we want, and we can also add platform-specific versions. |
|
Tim Allen | 47d4bd4d81 |
Update to v096r01 release.
byuu says: Changelog: - restructured the project and removed a whole bunch of old/dead directives from higan/GNUmakefile - huge amounts of work on hiro/cocoa (compiles but ~70% of the functionality is commented out) - fixed a masking error in my ARM CPU disassembler [Lioncash] - SFC: decided to change board cic=(411,413) back to board region=(ntsc,pal) ... the former was too obtuse If you rename Boolean (it's a problem with an include from ruby, not from hiro) and disable all the ruby drivers, you can compile an OS X binary, but obviously it's not going to do anything. It's a boring WIP, I just wanted to push out the project structure change now at the start of this WIP cycle. |
|
Tim Allen | 4e2eb23835 |
Update to v093 release.
byuu says: Changelog: - added Cocoa target: higan can now be compiled for OS X Lion [Cydrak, byuu] - SNES/accuracy profile hires color blending improvements - fixes Marvelous text [AWJ] - fixed a slight bug in SNES/SA-1 VBR support caused by a typo - added support for multi-pass shaders that can load external textures (requires OpenGL 3.2+) - added game library path (used by ananke->Import Game) to Settings->Advanced - system profiles, shaders and cheats database can be stored in "all users" shared folders now (eg /usr/share on Linux) - all configuration files are in BML format now, instead of XML (much easier to read and edit this way) - main window supports drag-and-drop of game folders (but not game files / ZIP archives) - audio buffer clears when entering a modal loop on Windows (prevents audio repetition with DirectSound driver) - a substantial amount of code clean-up (probably the biggest refactoring to date) One highly desired target for this release was to default to the optimal drivers instead of the safest drivers, but because AMD drivers don't seem to like my OpenGL 3.2 driver, I've decided to postpone that. AMD has too big a market share. Hopefully with v093 officially released, we can get some public input on what AMD doesn't like. |
|
Tim Allen | 29ea5bd599 |
Update to v092r09 release.
byuu says: This will be another massive diff from the previous version. All of higan was updated to use the new foo& bar syntax, and I also updated switch statements to be consistent as well (but not in the disassemblers, was starting to get an RSI just from what I already did.) phoenix/{windows, cocoa, qt} need to be updated to use "string foo" instead of "const string& foo", and after that, the major diffs should be finished. This archive is the first time I'm posting my copy-on-write, size+capacity nall::string class, so any feedback on that is welcome as well. |
|
Tim Allen | 94b2538af5 |
Update to higan v091 release.
byuu says: Basically just a project rename, with s/bsnes/higan and the new icon from lowkee added in. It won't compile on Windows because I forgot to update the resource.rc file, and a path transform command isn't working on Windows. It was really just meant as a starting point, so that v091 WIPs can flow starting from .00 with the new name (it overshadows bsnes v091, so publicly speaking this "shouldn't exist" and will probably be deleted from Google Code when v092 is ready.) |