Commit Graph

18 Commits

Author SHA1 Message Date
Tim Allen e9d2d56df9 Update to v105r1 release.
byuu says:

Changelog:

  - higan: readded support for soft-reset to Famicom, Super Famicom,
    Mega Drive cores (work in progress)
      - handhelds lack soft reset obviously
      - the PC Engine also lacks a physical reset button
      - the Master System's reset button acts like a gamepad button, so
        can't show up in the menu
  - Mega Drive: power cycle wasn't initializing CPU (M68K) or APU (Z80)
    RAM
  - Super Famicom: fix SPC700 opcode 0x3b regression; fixes Majuu Ou
    [Jonas Quinn]
  - Super Famicom: fix SharpRTC save regression; fixes Dai Kaijuu
    Monogatari II's real-time clock [Talarubi]
  - Super Famicom: fix EpsonRTC save regression; fixes Tengai Makyou
    Zero's real-time clock [Talarubi]
  - Super Famicom: removed `*::init()` functions, as they were never used
  - Super Famicom: removed all but two `*::load()` functions, as they
    were not used
  - higan: added option to auto-save backup RAM every five seconds
    (enabled by default)
      - this is in case the emulator crashes, or there's a power outage;
        turn it off under advanced settings if you want
  - libco: updated license from public domain to ISC, for consistency
    with nall, ruby, hiro
  - nall: Linux compiler defaults to g++; override with g++-version if
    g++ is <= 4.8
      - FreeBSD compiler default is going to remain g++49 until my dev
        box OS ships with g++ >= 4.9

Errata: I have weird RAM initialization constants, thanks to hex_usr
and onethirdxcubed for both finding this:
http://wiki.nesdev.com/w/index.php?title=CPU_power_up_state&diff=11711&oldid=11184

I'll remove this in the next WIP.
2017-11-07 09:05:54 +11:00
Tim Allen 04072b278b Update to v102r16 release.
byuu says:

Changelog:

  - Emulator::Stream now allows adding low-pass and high-pass filters
    dynamically
      - also accepts a pass# count; each pass is a second-order biquad
        butterworth IIR filter
  - Emulator::Stream no longer automatically filters out >20KHz
    frequencies for all streams
  - FC: added 20Hz high-pass filter; 20KHz low-pass filter
  - GB: removed simple 'magic constant' high-pass filter of unknown
    cutoff frequency (missed this one in the last WIP)
  - GB,SGB,GBC: added 20Hz high-pass filter; 20KHz low-pass filter
  - MS,GG,MD/PSG: added 20Hz high-pass filter; 20KHz low-pass filter
  - MD: added save state support (but it's completely broken for now;
    sorry)
  - MD/YM2612: fixed Voice#3 per-operator pitch support (fixes sound
    effects in Streets of Rage, etc)
  - PCE: added 20Hz high-pass filter; 20KHz low-pass filter
  - WS,WSC: added 20Hz high-pass filter; 20KHz low-pass filter

So, the point of the low-pass filters is to remove frequencies above
human hearing. If we don't do this, then resampling will introduce
aliasing that results in sounds that are audible to the human ear. Which
basically an annoying buzzing sound. You'll definitely hear the
improvement from these in games like Mega Man 2 on the NES. Of course,
these already existed before, so this WIP won't sound better than
previous WIPs.

The high-pass filters are a little more complicated. Their main role is
to remove DC bias and help to center the audio stream. I don't
understand how they do this at all, but ... that's what everyone who
knows what they're talking about says, thus ... so be it.

I have set all of the high-pass filters to 20Hz, which is below the
limit of human hearing. Now this is where it gets really interesting ...
technically, some of these systems actually cut off a lot of range. For
instance, the GBA should technically use an 800Hz high-pass filter when
output is done through the system's speakers. But of course, if you plug
in headphones, you can hear the lower frequencies.

Now 800Hz ... you definitely can hear. At that level, nearly all of the
bass is stripped out and the audio is very tinny. Just like the real
system. But for now, I don't want to emulate the audio being crushed
that badly.

I'm sticking with 20Hz everywhere since it won't negatively affect audio
quality. In fact, you should not be able to hear any difference between
this WIP and the previous WIP. But theoretically, DC bias should mostly
be removed as a result of these new filters. It may be that we need to
raise the values on some cores in the future, but I don't want to do
that until we know for certain that we have to.

What I can say is that compared to even older WIPs than r15 ... the
removal of the simple one-pole low-pass and high-pass filters with the
newer three-pass, second-order filters should result in much better
attenuation (less distortion of audible frequencies.) Probably not
enough to be noticeable in a blind test, though.
2017-03-09 07:20:40 +11:00
Tim Allen bdc100e123 Update to v102r02 release.
byuu says:

Changelog:

  - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it
      - if it's really invalid C++, then GCC needs to stop accepting it
        in strict `-std=c++14` mode
  - Emulator::Interface::Information::resettable is gone
  - Emulator::Interface::reset() is gone
  - FC, SFC, MD cores updated to remove soft reset behavior
  - split GameBoy::Interface into GameBoyInterface,
    GameBoyColorInterface
  - split WonderSwan::Interface into WonderSwanInterface,
    WonderSwanColorInterface
  - PCE: fixed off-by-one scanline error [hex_usr]
  - PCE: temporary hack to prevent crashing when VDS is set to < 2
  - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#)
    types to (u)int_(#)t types
  - icarus: replaced usage of unique with strip instead (so we don't
    mess up frameworks on macOS)
  - libco: added macOS-specific section marker [Ryphecha]

So ... the major news this time is the removal of the soft reset
behavior. This is a major!! change that results in a 100KiB diff file,
and it's very prone to accidental mistakes!! If anyone is up for
testing, or even better -- looking over the code changes between v102r01
and v102r02 and looking for any issues, please do so. Ideally we'll want
to test every NES mapper type and every SNES coprocessor type by loading
said games and power cycling to make sure the games are all cleanly
resetting. It's too big of a change for me to cover there not being any
issues on my own, but this is truly critical code, so yeah ... please
help if you can.

We technically lose a bit of hardware documentation here. The soft reset
events do all kinds of interesting things in all kinds of different
chips -- or at least they do on the SNES. This is obviously not ideal.
But in the process of removing these portions of code, I found a few
mistakes I had made previously. It simplifies resetting the system state
a lot when not trying to have all the power() functions call the reset()
functions to share partial functionality.

In the future, the goal will be to come up with a way to add back in the
soft reset behavior via keyboard binding as with the Master System core.
What's going to have to happen is that the key binding will have to send
a "reset pulse" to every emulated chip, and those chips are going to
have to act independently to power() instead of reusing functionality.
We'll get there eventually, but there's many things of vastly greater
importance to work on right now, so it'll be a while. The information
isn't lost ... we'll just have to pull it out of v102 when we are ready.

Note that I left the SNES reset vector simulation code in, even though
it's not possible to trigger, for the time being.

Also ... the Super Game Boy core is still disconnected. To be honest, it
totally slipped my mind when I released v102 that it wasn't connected
again yet. This one's going to be pretty tricky to be honest. I'm
thinking about making a third GameBoy::Interface class just for SGB, and
coming up with some way of bypassing platform-> calls when in this
mode.
2017-01-23 08:04:26 +11:00
Tim Allen bf90bdfcc8 Update to v101r31 release.
byuu says:

Changelog:

  - converted Emulator::Interface::Bind to Emulator::Platform
  - temporarily disabled SGB hooks
  - SMS: emulated Game Gear palette (latching word-write behavior not
    implemented yet)
  - SMS: emulated Master System 'Reset' button, Game Gear 'Start' button
  - SMS: removed reset() functionality, driven by the mappable input now
    instead
  - SMS: split interface class in two: one for Master System, one for
    Game Gear
  - SMS: emulated Game Gear video cropping to 160x144
  - PCE: started on HuC6280 CPU core—so far only registers, NOP
    instruction has been implemented

Errata:

  - Super Game Boy support is broken and thus disabled
  - if you switch between Master System and Game Gear without
    restarting, bad things happen:
      - SMS→GG, no video output on the GG
      - GG→SMS, no input on the SMS

I'm not sure what's causing the SMS\<-\>GG switch bug, having a hard
time debugging it. Help would be very much appreciated, if anyone's up
for it. Otherwise I'll keep trying to track it down on my end.
2017-01-13 12:15:45 +11:00
Tim Allen f3e67da937 Update to v101r19 release.
byuu says:

Changelog:

-   added \~130 new PAL games to icarus (courtesy of Smarthuman
    and aquaman)
-   added all three Korean-localized games to icarus
-   sfc: removed SuperDisc emulation (it was going nowhere)
-   sfc: fixed MSU1 regression where the play/repeat flags were not
    being cleared on track select
-   nall: cryptography support added; will be used to sign future
    databases (validation will always be optional)
-   minor shims to fix compilation issues due to nall changes

The real magic is that we now have 25-30% of the PAL SNES library in
icarus!

Signing will be tricky. Obviously if I put the public key inside the
higan archive, then all anyone has to do is change that public key for
their own releases. And if you download from my site (which is now over
HTTPS), then you don't need the signing to verify integrity. I may just
put the public key on my site on my site and leave it at that, we'll
see.
2016-10-28 08:16:58 +11:00
Tim Allen ca277cd5e8 Update to v100r14 release.
byuu says:

(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)

I completely replaced the time management system in higan and overhauled
the scheduler.

Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.

The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.

The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:

    auto SMP::step(uint clocks) -> void {
      clock += clocks * (uint64)cpu.frequency;
      dsp.clock -= clocks;
      if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
      if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
    }

To this:

    auto SMP::step(uint clocks) -> void {
      Thread::step(clocks);
      synchronize(dsp);
      synchronize(cpu);
    }

As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.

Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.

Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.

Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.

----

Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.

The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.

----

EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 13:56:12 +10:00
Tim Allen 07995c05a5 Update to v100 release.
byuu says:

higan has finally reached v100!

I feel it's important to stress right away that this is not "version
1.00", nor is it a major milestone release. Rather than arbitrary version
numbers, all of my software simply bumps version numbers by one for each
official release. As such, higan v100 is simply higan's 100th release.

That said, the primary focus of this release has been code
clean-ups. These are always somewhat dangerous in that regressions are
possible. We've tested through sixteen WIP revisions, one of which was
open to the public, to try and minimize any regressions. But all the same,
please report any regressions if you discover any.

Changelog (since v099):
FC: render during pixels 1-256 instead of 0-255 [hex_usr]
FC: rewrote controller emulation code
SFC: 8% speedup over the previous release thanks to PPU optimizations
SFC: fixed nasty DB address wrapping regression from v099
SFC: USART developer controller removed; superseded by 21fx
SFC: Super Multitap option removed from controller port 1; ports
    renamed 2-5
SFC: hidden option to experiment with 128KB VRAM (strictly for novelty)
higan: audio volume no longer divided by number of audio streams
higan: updated controller polling code to fix possible future mapping
    issues
higan: replaced nall/stream with nall/vfs for file-loading subsystem
tomoko: can now load multi-slotted games via command-line
tomoko: synchronize video removed from UI; still available in the
    settings file
tomoko, icarus: can navigate to root drive selection on Windows
all: major code cleanups and refactoring (~1MB diff against v099)

Note 1: the audio volume change means that SGB and MSU1 games won't
lose half the volume on the SNES sounds anymore. However, if one goes
overboard and drives the sound all the way to max volume with the MSU1,
clamping may occur. The obvious solution is not to drive volume that high
(it will vastly overpower the SNES audio, which usually never exceeds
25% volume.) Another option is to lower the volume in the audio settings
panel to 50%. In general, neither is likely to ever be necessary.

Note 2: the synchronize video option was hidden from the UI because it
is no longer useful. With the advent of compositors, the loss of the
complicated timing settings panel, support for the WonderSwan and its
75hz display, the need to emulate variable refresh rate behaviors in the
Game Boy, the unfortunate latency spike and audio distortion caused by
long Vsync pauses, and the arrival of adaptive sync technology ... it
no longer makes sense to present this option. However, as stated, you
can edit settings.bml to enable this option anyway if you insist and
understand the aforementioned risks.

Changelog (since v099r16 open beta):

- fixed MSU1 audio sign extension
- fixed compilation with SGB support disabled
- icarus can now navigate to root directory
- fixed compilation issues with OS X port
- (hopefully) fixed label height issue with hiro that affected icarus
  import dialog
- (mostly) fixed BS Memory, Sufami Turbo slot loading

Errata:

- forgot to remove the " - Slot A", " - Slot B" suffixes for Sufami
  Turbo slot loading
  - this means you have to navigate up one folder and then into Sufami
    Turbo/ to load games for this system
- moving WonderSwan orientation controls to the device slot is causing
  some nastiness
  - can now select orientation from the main menu, but it doesn't rotate
    the display
2016-07-08 22:04:59 +10:00
Tim Allen a816998122 Update to v099r10 release.
byuu says:

Changelog:
- higan/profile/ => higan/systems/ [temporary; unless we can't think of
  a better base folder name]
- god-damn-better-have fixed the input polling bug
- re-added command-line and drag-and-drop loading
  - command-line loading can now load multiple folders at once (SGB+GB
    game; Sufami Turbo+Slot A+Slot B; etc)
  - if you load just the base cart, it'll present you with a dialog to
    optionally load slotted cart(s)
- MSU1 now goes through nall/vfs instead of directly accessing the
  filesystem
- Famicom Cartridge, PPU cores updated to newer programming style
  - there's countless opportunity for BitField and .bits() in the PPU
    ... but I'm worried about breaking things

If anyone has a working MSU1 game and can test the changes out, that'd
be appreciated. I still don't have a test ROM on my dev box.

I wouldn't worry too much about extensively testing the Famicom PPU
changes just yet ... I'm still struggling with what to name the structs
inside the classes between all of my emulators, and the BitField/.bits()
changes will be much more important to test at a later date.

The only use case left for Emulator::Interface::path(uint id) is for
21fx emulation. This peripheral loads a DLL/SO via LoadLibrary/dlopen,
which do not have any official ways to open a file in RAM. I'm
very hesitant to use the portable trick of writing the memory to a
temporary file, loading it, and deleting the temporary file once done
... it's a real waste of disk activity. I might make something like
vfs::file::isVirtual->bool,path()->string to get around this. But even
once I do, the underlying LoadLibrary/dlopen call is still going to be
direct disk access.
2016-06-26 18:54:12 +10:00
Tim Allen 875f031182 Update to v099r06 release.
byuu says:

Changelog:
- Super Famicom core converted to use nall/vfs
  - excludes Super Game Boy; since that's invoked from inside the GB core

This was definitely the major obstacle to test nall/vfs'
applicability. Things worked out pretty great in the end.

We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB
(cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes
a very large source of indirection. Before it was: "coprocessor <=>
cartridge <=> interface" for loading and saving data, and now it's just
"coprocessor <=> cartridge". And it may make sense to eventually turn
this into just "cartridge -> coprocessor" by making each coprocessor
class handle its own markup parsing.

It's nice to have all the manifest parsing in one location (well, sans
MSU1); but it's also nice for loading/unloading to be handled by each
coprocessor itself. So I'll have to think longer about that one.

I've also started handling Interface::save() differently. Instead of
keeping track of memory IDs and filenames, and iterating through that
vector of objects ... instead I now have a system that mirrors the markup
parsing on loading, but handles saving instead. This was actually the
reason the code size savings weren't more significant, but I like this
style more. As before, it removes an extra level of indirection.

So ... next up, I need to port over the GB, then GBA, then WS
cores. These shouldn't take too long since they're all very simple with
just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then
after that, gut all the old stream stuff from nall and higan. Kill the
(load,save)Request stuff, rename the load(Gamepak)Request to something
simpler, and then we should be good.

Anyway ... these are some huge changes.
2016-06-24 22:01:03 +10:00
Tim Allen fdc41611cf Update to v098r14 release.
byuu says:

Changelog:
- improved attenuation of biquad filter by computing butterworth Q
  coefficients correctly (instead of using the same constant)
- adding 1e-25 to each input sample into the biquad filters to try and
  prevent denormalization
- updated normalization from [0.0 to 1.0] to [-1.0 to +1.0]; volume/reverb
  happen in floating-point mode now
- good amount of work to make the base Emulator::Audio support any number
  of output channels
  - so that we don't have to do separate work on left/right channels;
    and can instead share the code for each channel
- Emulator::Interface::audioSample(int16 left, int16 right); changed to:
  - Emulator::Interface::audioSample(double* samples, uint channels);
  - samples are normalized [-1.0 to +1.0]
  - for now at least, channels will be the value given to
    Emulator::Audio::reset()
- fixed GUI crash on startup when audio driver is set to None

I'm probably going to be updating ruby to accept normalized doubles as
well; but I'm not sure if I will try and support anything other 2-channel
audio output. It'll depend on how easy it is to do so; perhaps it'll be
a per-driver setting.

The denormalization thing is fierce. If that happens, it drops the
emulator framerate from 220fps to about 20fps for Game Boy emulation. And
that happens basically whenever audio output is silent. I'm probably
also going to make a nall/denormal.hpp file at some point with
platform-specific functionality to set the CPU state to "denormals as
zero" where applicable. I'll still add the 1e-25 offset (inaudible)
as another fallback.
2016-06-01 21:23:22 +10:00
Tim Allen 7cdae5195a Update to v098r07 release.
byuu says:

Changelog:
- GB: support modeSelect and RAM for MBC1M (Momotarou Collection)
- audio: implemented native resampling support into Emulator::Stream
- audio: removed nall::DSP completely

Unfortunately, the new resampler didn't turn out quite as fast as I had
hoped. The final hermite resampling added some overhead; and I had to
bump up the kernel count to 500 from 400 to get the buzzing to go away
on my main PC. I think that's due to it running at 48000hz output
instead of 44100hz output, maybe?

Compared to Ryphecha's:
(NES) Mega Man 2: 167fps -> 166fps
(GB) Mega Man II: 224fps -> 200fps
(WSC) Riviera: 143fps -> 151fps

Odd that the WS/WSC ends up faster while the DMG/CGB ends up slower.

But this knocks 922 lines down to 146 lines. The only files left in all
of higan not written (or rewritten) by me are ruby/xaudio2.h and
libco/ppc.c
2016-04-23 17:55:59 +10:00
Tim Allen e2ee6689a0 Update to v098r06 release.
byuu says:

Changelog:
- emulation cores now refresh video from host thread instead of
  cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
  armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
  manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
  - it is now possible to have more than two audio streams: eg SNES
    + SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
  configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
  luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it

I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.

Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/

I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
2016-04-22 23:35:51 +10:00
Tim Allen 19e1d89f00 Update to v098r01 release.
byuu says:

Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
  merged to SFC::Cothread
  - Cothread here just means "Thread with CPU affinity" (couldn't think
    of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
  - this is the beginning of work to allow expansion port devices to be
    dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
  no frequency is assigned
  - note: the WASAPI driver can default to whatever the native frequency
    is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
  it will display the frequency used)
- tomoko: removed the timing settings panel
  - the goal is to work toward smooth video via adaptive sync
  - the model is broken by not being in control of the audio frequency
    anyway
  - it's further broken by PAL running at 50hz and WSC running at 75hz
  - it was always broken anyway by SNES interlace timing varying from
    progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
  and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
  (libco, emulator, audio, video)

The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
2016-04-09 13:40:12 +10:00
Tim Allen 4b29f4bad7 Update to v097r15 release.
byuu says:

Changelog:
- higan now uses Natural<Size>/Integer<Size> for its internal types
- Super Famicom emulation now uses uint24 instead of uint for bus
  addresses (it's a 24-bit bus)
- cleaned up gb/apu MMIO writes
- cleaned up sfc/coprocessor/msu1 MMIO writes
- ~3% speed penalty

I've wanted to do that 24-bit bus thing for so long, but have always
been afraid of the speed impact. It's probably going to hurt
balanced/performance once they compile again, but it wasn't significant
enough to harm the accuracy core's frame rate, thankfully. Only lost one
frame per second.

The GBA core handlers are clearly going to take a lot more work. The
bit-ranges will make it substantially easier to handle, though. Lots of
32-bit registers where certain values span multiple bytes, but we have
to be able to read/write at byte-granularity.
2016-02-16 20:32:49 +11:00
Tim Allen 6c83329cae Update to v097r13 release.
byuu says:

I refactored my schedulers. Added about ten lines to each scheduler, and
removed about 100 lines of calling into internal state in the scheduler
for the FC,SFC cores and about 30-40 lines for the other cores. All of
its state is now private.

Also reworked all of the entry points to static auto Enter() and auto
main(). Where Enter() handles all the synchronization stuff, and main()
doesn't need the while(true); loop forcing another layer of indentation
everywhere.

Took a few hours to do, but totally worth it. I'm surprised I didn't do
this sooner.

Also updated icarus gmake install rule to copy over the database.
2016-02-09 22:51:12 +11:00
Tim Allen 344e63d928 Update to v097r02 release.
byuu says:

Note: balanced/performance profiles still broken, sorry.

Changelog:
- added nall/GNUmakefile unique() function; used on linking phase of
  higan
- added nall/unique_pointer
- target-tomoko and {System}::Video updated to use
  unique_pointer<ClassName> instead of ClassName* [1]
- locate() updated to search multiple paths [2]
- GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs
- FC, GB, GBA: merge video/ into the PPU cores
- ruby: fixed ~AudioXAudio2() typo

[1] I expected this to cause new crashes on exit due to changing the
order of destruction of objects (and deleting things that weren't
deleted before), but ... so far, so good. I guess we'll see what crops
up, especially on OS X (which is already crashing for unknown reasons on
exit.)

[2] right now, the search paths are: programpath(), {configpath(),
"higan/"}, {localpath(), "higan/"}; but we can add as many more as we
want, and we can also add platform-specific versions.
2016-01-25 22:27:18 +11:00
Tim Allen f1ebef2ea8 Update to v097r01 release.
byuu says:

A minor WIP to get us started.

Changelog:
- System::Video merged to PPU::Video
- System::Audio merged to DSP::Audio
- System::Configuration merged to Interface::Settings
- created emulator/emulator.cpp and accompanying object file for shared
  code between all cores

Currently, emulator.cpp just holds a videoColor() function that takes
R16G16B16, performs gamma/saturation/luma adjust, and outputs
(currently) A8R8G8B8. It's basically an internal function call for cores
to use when generating palette entries. This code used to exist inside
ui-tomoko/program/interface.cpp, but we have to move it internal for
software display emulation. But in the future, we could add other useful
cross-core functionality here.
2016-01-23 18:29:34 +11:00
Tim Allen 47d4bd4d81 Update to v096r01 release.
byuu says:

Changelog:

- restructured the project and removed a whole bunch of old/dead
  directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
  functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
  region=(ntsc,pal) ... the former was too obtuse

If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.

It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.
2015-12-30 17:54:59 +11:00