Commit Graph

13 Commits

Author SHA1 Message Date
Tim Allen 3d8be92550 Update to v106r3 release.
byuu says:

Changelog:

  - Super Famicom: update to newer board markup syntax
  - Super Famicom: update all mapped ROMs to be write-protected
      - errata: SPC7110 set ram.writeProtect(true), I'll fix it in the
        next WIP
  - icarus: rewrote the Super Famicom heuristics module from scratch

Instead of icarus heuristics generating higan-specific mappings, it now
generates generic board IDs that can be used by any emulator. I had
originally planned to print out real PCB ID codes here, but these board
mappings are meant to be more generic, and I don't want them to look
real. The pseudo-codes are easy to parse, for example: `DSP-LOROM-NVRAM`
for Super Mario Kart, `SUPERFX-RAM` for Doom.

I'm going to make a `Boards (Generic).bml` file that will contain mapping
definitions for every board. Until this is done, any games not in the SNES
preservation database will fail to play because the mapping information is
now missing.
2018-02-05 20:58:02 +11:00
Tim Allen e9d2d56df9 Update to v105r1 release.
byuu says:

Changelog:

  - higan: readded support for soft-reset to Famicom, Super Famicom,
    Mega Drive cores (work in progress)
      - handhelds lack soft reset obviously
      - the PC Engine also lacks a physical reset button
      - the Master System's reset button acts like a gamepad button, so
        can't show up in the menu
  - Mega Drive: power cycle wasn't initializing CPU (M68K) or APU (Z80)
    RAM
  - Super Famicom: fix SPC700 opcode 0x3b regression; fixes Majuu Ou
    [Jonas Quinn]
  - Super Famicom: fix SharpRTC save regression; fixes Dai Kaijuu
    Monogatari II's real-time clock [Talarubi]
  - Super Famicom: fix EpsonRTC save regression; fixes Tengai Makyou
    Zero's real-time clock [Talarubi]
  - Super Famicom: removed `*::init()` functions, as they were never used
  - Super Famicom: removed all but two `*::load()` functions, as they
    were not used
  - higan: added option to auto-save backup RAM every five seconds
    (enabled by default)
      - this is in case the emulator crashes, or there's a power outage;
        turn it off under advanced settings if you want
  - libco: updated license from public domain to ISC, for consistency
    with nall, ruby, hiro
  - nall: Linux compiler defaults to g++; override with g++-version if
    g++ is <= 4.8
      - FreeBSD compiler default is going to remain g++49 until my dev
        box OS ships with g++ >= 4.9

Errata: I have weird RAM initialization constants, thanks to hex_usr
and onethirdxcubed for both finding this:
http://wiki.nesdev.com/w/index.php?title=CPU_power_up_state&diff=11711&oldid=11184

I'll remove this in the next WIP.
2017-11-07 09:05:54 +11:00
Tim Allen bdc100e123 Update to v102r02 release.
byuu says:

Changelog:

  - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it
      - if it's really invalid C++, then GCC needs to stop accepting it
        in strict `-std=c++14` mode
  - Emulator::Interface::Information::resettable is gone
  - Emulator::Interface::reset() is gone
  - FC, SFC, MD cores updated to remove soft reset behavior
  - split GameBoy::Interface into GameBoyInterface,
    GameBoyColorInterface
  - split WonderSwan::Interface into WonderSwanInterface,
    WonderSwanColorInterface
  - PCE: fixed off-by-one scanline error [hex_usr]
  - PCE: temporary hack to prevent crashing when VDS is set to < 2
  - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#)
    types to (u)int_(#)t types
  - icarus: replaced usage of unique with strip instead (so we don't
    mess up frameworks on macOS)
  - libco: added macOS-specific section marker [Ryphecha]

So ... the major news this time is the removal of the soft reset
behavior. This is a major!! change that results in a 100KiB diff file,
and it's very prone to accidental mistakes!! If anyone is up for
testing, or even better -- looking over the code changes between v102r01
and v102r02 and looking for any issues, please do so. Ideally we'll want
to test every NES mapper type and every SNES coprocessor type by loading
said games and power cycling to make sure the games are all cleanly
resetting. It's too big of a change for me to cover there not being any
issues on my own, but this is truly critical code, so yeah ... please
help if you can.

We technically lose a bit of hardware documentation here. The soft reset
events do all kinds of interesting things in all kinds of different
chips -- or at least they do on the SNES. This is obviously not ideal.
But in the process of removing these portions of code, I found a few
mistakes I had made previously. It simplifies resetting the system state
a lot when not trying to have all the power() functions call the reset()
functions to share partial functionality.

In the future, the goal will be to come up with a way to add back in the
soft reset behavior via keyboard binding as with the Master System core.
What's going to have to happen is that the key binding will have to send
a "reset pulse" to every emulated chip, and those chips are going to
have to act independently to power() instead of reusing functionality.
We'll get there eventually, but there's many things of vastly greater
importance to work on right now, so it'll be a while. The information
isn't lost ... we'll just have to pull it out of v102 when we are ready.

Note that I left the SNES reset vector simulation code in, even though
it's not possible to trigger, for the time being.

Also ... the Super Game Boy core is still disconnected. To be honest, it
totally slipped my mind when I released v102 that it wasn't connected
again yet. This one's going to be pretty tricky to be honest. I'm
thinking about making a third GameBoy::Interface class just for SGB, and
coming up with some way of bypassing platform-> calls when in this
mode.
2017-01-23 08:04:26 +11:00
Tim Allen c50723ef61 Update to v100r15 release.
byuu wrote:

Aforementioned scheduler changes added. Longer explanation of why here:
http://hastebin.com/raw/toxedenece

Again, we really need to test this as thoroughly as possible for
regressions :/
This is a really major change that affects absolutely everything: all
emulation cores, all coprocessors, etc.

Also added ADDX and SUB to the 68K core, which brings us just barely
above 50% of the instruction encoding space completed.

[Editor's note: The "aformentioned scheduler changes" were described in
a previous forum post:

    Unfortunately, 64-bits just wasn't enough precision (we were
    getting misalignments ~230 times a second on 21/24MHz clocks), so
    I had to move to 128-bit counters. This of course doesn't exist on
    32-bit architectures (and probably not on all 64-bit ones either),
    so for now ... higan's only going to compile on 64-bit machines
    until we figure something out. Maybe we offer a "lower precision"
    fallback for machines that lack uint128_t or something. Using the
    booth algorithm would be way too slow.

    Anyway, the precision is now 2^-96, which is roughly 10^-29. That
    puts us far beyond the yoctosecond. Suck it, MAME :P I'm jokingly
    referring to it as the byuusecond. The other 32-bits of precision
    allows a 1Hz clock to run up to one full second before all clocks
    need to be normalized to prevent overflow.

    I fixed a serious wobbling issue where I was using clock > other.clock
    for synchronization instead of clock >= other.clock; and also another
    aliasing issue when two threads share a common frequency, but don't
    run in lock-step. The latter I don't even fully understand, but I
    did observe it in testing.

    nall/serialization.hpp has been extended to support 128-bit integers,
    but without explicitly naming them (yay generic code), so nall will
    still compile on 32-bit platforms for all other applications.

    Speed is basically a wash now. FC's a bit slower, SFC's a bit faster.

The "longer explanation" in the linked hastebin is:

    Okay, so the idea is that we can have an arbitrary number of
    oscillators. Take the SNES:

    - CPU/PPU clock = 21477272.727272hz
    - SMP/DSP clock = 24576000hz
    - Cartridge DSP1 clock = 8000000hz
    - Cartridge MSU1 clock = 44100hz
    - Controller Port 1 modem controller clock = 57600hz
    - Controller Port 2 barcode battler clock = 115200hz
    - Expansion Port exercise bike clock = 192000hz

    Is this a pathological case? Of course it is, but it's possible. The
    first four do exist in the wild already: see Rockman X2 MSU1
    patch. Manifest files with higan let you specify any frequency you
    want for any component.

    The old trick higan used was to hold an int64 counter for each
    thread:thread synchronization, and adjust it like so:

    - if thread A steps X clocks; then clock += X * threadB.frequency
      - if clock >= 0; switch to threadB
    - if thread B steps X clocks; then clock -= X * threadA.frequency
      - if clock <  0; switch to threadA

    But there are also system configurations where one processor has to
    synchronize with more than one other processor. Take the Genesis:

    - the 68K has to sync with the Z80 and PSG and YM2612 and VDP
    - the Z80 has to sync with the 68K and PSG and YM2612
    - the PSG has to sync with the 68K and Z80 and YM2612

    Now I could do this by having an int64 clock value for every
    association. But these clock values would have to be outside the
    individual Thread class objects, and we would have to update every
    relationship's clock value. So the 68K would have to update the Z80,
    PSG, YM2612 and VDP clocks. That's four expensive 64-bit multiply-adds
    per clock step event instead of one.

    As such, we have to account for both possibilities. The only way to
    do this is with a single time base. We do this like so:

    - setup: scalar = timeBase / frequency
    - step: clock += scalar * clocks

    Once per second, we look at every thread, find the smallest clock
    value. Then subtract that value from all threads. This prevents the
    clock counters from overflowing.

    Unfortunately, these oscillator values are psychotic, unpredictable,
    and often times repeating fractions. Even with a timeBase of
    1,000,000,000,000,000,000 (one attosecond); we get rounding errors
    every ~16,300 synchronizations. Specifically, this happens with a CPU
    running at 21477273hz (rounded) and SMP running at 24576000hz. That
    may be good enough for most emulators, but ... you know how I am.

    Plus, even at the attosecond level, we're really pushing against the
    limits of 64-bit integers. Given the reciprocal inverse, a frequency
    of 1Hz (which does exist in higan!) would have a scalar that consumes
    1/18th of the entire range of a uint64 on every single step. Yes, I
    could raise the frequency, and then step by that amount, I know. But
    I don't want to have weird gotchas like that in the scheduler core.

    Until I increase the accuracy to about 100 times greater than a
    yoctosecond, the rounding errors are too great. And since the only
    choice above 64-bit values is 128-bit values; we might as well use
    all the extra headroom. 2^-96 as a timebase gives me the ability to
    have both a 1Hz and 4GHz clock; and run them both for a full second;
    before an overflow event would occur.

Another hastebin includes demonstration code:

    #include <libco/libco.h>

    #include <nall/nall.hpp>
    using namespace nall;

    //

    cothread_t mainThread = nullptr;
    const uint iterations = 100'000'000;
    const uint cpuFreq = 21477272.727272 + 0.5;
    const uint smpFreq = 24576000.000000 + 0.5;
    const uint cpuStep = 4;
    const uint smpStep = 5;

    //

    struct ThreadA {
      cothread_t handle = nullptr;
      uint64 frequency = 0;
      int64 clock = 0;

      auto create(auto (*entrypoint)() -> void, uint frequency) {
        this->handle = co_create(65536, entrypoint);
        this->frequency = frequency;
        this->clock = 0;
      }
    };

    struct CPUA : ThreadA {
      static auto Enter() -> void;
      auto main() -> void;
      CPUA() { create(&CPUA::Enter, cpuFreq); }
    } cpuA;

    struct SMPA : ThreadA {
      static auto Enter() -> void;
      auto main() -> void;
      SMPA() { create(&SMPA::Enter, smpFreq); }
    } smpA;

    uint8 queueA[iterations];
    uint offsetA;
    cothread_t resumeA = cpuA.handle;

    auto EnterA() -> void {
      offsetA = 0;
      co_switch(resumeA);
    }

    auto QueueA(uint value) -> void {
      queueA[offsetA++] = value;
      if(offsetA >= iterations) {
        resumeA = co_active();
        co_switch(mainThread);
      }
    }

    auto CPUA::Enter() -> void { while(true) cpuA.main(); }

    auto CPUA::main() -> void {
      QueueA(1);
      smpA.clock -= cpuStep * smpA.frequency;
      if(smpA.clock < 0) co_switch(smpA.handle);
    }

    auto SMPA::Enter() -> void { while(true) smpA.main(); }

    auto SMPA::main() -> void {
      QueueA(2);
      smpA.clock += smpStep * cpuA.frequency;
      if(smpA.clock >= 0) co_switch(cpuA.handle);
    }

    //

    struct ThreadB {
      cothread_t handle = nullptr;
      uint128_t scalar = 0;
      uint128_t clock = 0;

      auto print128(uint128_t value) {
        string s;
        while(value) {
          s.append((char)('0' + value % 10));
          value /= 10;
        }
        s.reverse();
        print(s, "\n");
      }

      //femtosecond (10^15) =    16306
      //attosecond  (10^18) =   688838
      //zeptosecond (10^21) = 13712691
      //yoctosecond (10^24) = 13712691 (hitting a dead-end on a rounding error causing a wobble)
      //byuusecond? ( 2^96) = (perfect? 79,228 times more precise than a yoctosecond)

      auto create(auto (*entrypoint)() -> void, uint128_t frequency) {
        this->handle = co_create(65536, entrypoint);

        uint128_t unitOfTime = 1;
      //for(uint n : range(29)) unitOfTime *= 10;
        unitOfTime <<= 96;  //2^96 time units ...

        this->scalar = unitOfTime / frequency;
        print128(this->scalar);
        this->clock = 0;
      }

      auto step(uint128_t clocks) -> void { clock += clocks * scalar; }
      auto synchronize(ThreadB& thread) -> void { if(clock >= thread.clock) co_switch(thread.handle); }
    };

    struct CPUB : ThreadB {
      static auto Enter() -> void;
      auto main() -> void;
      CPUB() { create(&CPUB::Enter, cpuFreq); }
    } cpuB;

    struct SMPB : ThreadB {
      static auto Enter() -> void;
      auto main() -> void;
      SMPB() { create(&SMPB::Enter, smpFreq); clock = 1; }
    } smpB;

    auto correct() -> void {
      auto minimum = min(cpuB.clock, smpB.clock);
      cpuB.clock -= minimum;
      smpB.clock -= minimum;
    }

    uint8 queueB[iterations];
    uint offsetB;
    cothread_t resumeB = cpuB.handle;

    auto EnterB() -> void {
      correct();
      offsetB = 0;
      co_switch(resumeB);
    }

    auto QueueB(uint value) -> void {
      queueB[offsetB++] = value;
      if(offsetB >= iterations) {
        resumeB = co_active();
        co_switch(mainThread);
      }
    }

    auto CPUB::Enter() -> void { while(true) cpuB.main(); }

    auto CPUB::main() -> void {
      QueueB(1);
      step(cpuStep);
      synchronize(smpB);
    }

    auto SMPB::Enter() -> void { while(true) smpB.main(); }

    auto SMPB::main() -> void {
      QueueB(2);
      step(smpStep);
      synchronize(cpuB);
    }

    //

    #include <nall/main.hpp>
    auto nall::main(string_vector) -> void {
      mainThread = co_active();

      uint masterCounter = 0;
      while(true) {
        print(masterCounter++, " ...\n");

        auto A = clock();
        EnterA();
        auto B = clock();
        print((double)(B - A) / CLOCKS_PER_SEC, "s\n");

        auto C = clock();
        EnterB();
        auto D = clock();
        print((double)(D - C) / CLOCKS_PER_SEC, "s\n");

        for(uint n : range(iterations)) {
          if(queueA[n] != queueB[n]) return print("fail at ", n, "\n");
        }
      }
    }

...and that's everything.]
2016-07-31 12:11:20 +10:00
Tim Allen ca277cd5e8 Update to v100r14 release.
byuu says:

(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)

I completely replaced the time management system in higan and overhauled
the scheduler.

Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.

The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.

The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:

    auto SMP::step(uint clocks) -> void {
      clock += clocks * (uint64)cpu.frequency;
      dsp.clock -= clocks;
      if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
      if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
    }

To this:

    auto SMP::step(uint clocks) -> void {
      Thread::step(clocks);
      synchronize(dsp);
      synchronize(cpu);
    }

As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.

Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.

Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.

Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.

----

Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.

The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.

----

EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 13:56:12 +10:00
Tim Allen 875f031182 Update to v099r06 release.
byuu says:

Changelog:
- Super Famicom core converted to use nall/vfs
  - excludes Super Game Boy; since that's invoked from inside the GB core

This was definitely the major obstacle to test nall/vfs'
applicability. Things worked out pretty great in the end.

We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB
(cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes
a very large source of indirection. Before it was: "coprocessor <=>
cartridge <=> interface" for loading and saving data, and now it's just
"coprocessor <=> cartridge". And it may make sense to eventually turn
this into just "cartridge -> coprocessor" by making each coprocessor
class handle its own markup parsing.

It's nice to have all the manifest parsing in one location (well, sans
MSU1); but it's also nice for loading/unloading to be handled by each
coprocessor itself. So I'll have to think longer about that one.

I've also started handling Interface::save() differently. Instead of
keeping track of memory IDs and filenames, and iterating through that
vector of objects ... instead I now have a system that mirrors the markup
parsing on loading, but handles saving instead. This was actually the
reason the code size savings weren't more significant, but I like this
style more. As before, it removes an extra level of indirection.

So ... next up, I need to port over the GB, then GBA, then WS
cores. These shouldn't take too long since they're all very simple with
just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then
after that, gut all the old stream stuff from nall and higan. Kill the
(load,save)Request stuff, rename the load(Gamepak)Request to something
simpler, and then we should be good.

Anyway ... these are some huge changes.
2016-06-24 22:01:03 +10:00
Tim Allen 44a8c5a2b4 Update to v099r03 release.
byuu says:

Changelog:
- finished cleaning up the SFC core to my new coding conventions
- removed sfc/controller/usart (superseded by 21fx)
- hid Synchronize Video option from the menu (still in the configuration
  file)

Pretty much the only minor detail left is some variable names in the
SA-1 core that really won't look good at all if I move to camelCase,
so I'll have to rethink how I handle those. It's probably a good area
to attempt using BitFields, to see how it impacts performance. But I'll
do that in a test branch first.

But for the most part, this should be the end of the gigantic diffs (this
one was 174KiB), at least for the SFC/WS cores. Still have the FC/GB/GBA
cores to clean up more fully. Assuming we don't spot any new regressions,
we should be ~95% out of the woods on code cleanups breaking things.
2016-06-17 23:03:54 +10:00
Tim Allen e2ee6689a0 Update to v098r06 release.
byuu says:

Changelog:
- emulation cores now refresh video from host thread instead of
  cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
  armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
  manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
  - it is now possible to have more than two audio streams: eg SNES
    + SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
  configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
  luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it

I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.

Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/

I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
2016-04-22 23:35:51 +10:00
Tim Allen 19e1d89f00 Update to v098r01 release.
byuu says:

Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
  merged to SFC::Cothread
  - Cothread here just means "Thread with CPU affinity" (couldn't think
    of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
  - this is the beginning of work to allow expansion port devices to be
    dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
  no frequency is assigned
  - note: the WASAPI driver can default to whatever the native frequency
    is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
  it will display the frequency used)
- tomoko: removed the timing settings panel
  - the goal is to work toward smooth video via adaptive sync
  - the model is broken by not being in control of the audio frequency
    anyway
  - it's further broken by PAL running at 50hz and WSC running at 75hz
  - it was always broken anyway by SNES interlace timing varying from
    progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
  and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
  (libco, emulator, audio, video)

The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
2016-04-09 13:40:12 +10:00
Tim Allen 4b29f4bad7 Update to v097r15 release.
byuu says:

Changelog:
- higan now uses Natural<Size>/Integer<Size> for its internal types
- Super Famicom emulation now uses uint24 instead of uint for bus
  addresses (it's a 24-bit bus)
- cleaned up gb/apu MMIO writes
- cleaned up sfc/coprocessor/msu1 MMIO writes
- ~3% speed penalty

I've wanted to do that 24-bit bus thing for so long, but have always
been afraid of the speed impact. It's probably going to hurt
balanced/performance once they compile again, but it wasn't significant
enough to harm the accuracy core's frame rate, thankfully. Only lost one
frame per second.

The GBA core handlers are clearly going to take a lot more work. The
bit-ranges will make it substantially easier to handle, though. Lots of
32-bit registers where certain values span multiple bytes, but we have
to be able to read/write at byte-granularity.
2016-02-16 20:32:49 +11:00
Tim Allen 6c83329cae Update to v097r13 release.
byuu says:

I refactored my schedulers. Added about ten lines to each scheduler, and
removed about 100 lines of calling into internal state in the scheduler
for the FC,SFC cores and about 30-40 lines for the other cores. All of
its state is now private.

Also reworked all of the entry points to static auto Enter() and auto
main(). Where Enter() handles all the synchronization stuff, and main()
doesn't need the while(true); loop forcing another layer of indentation
everywhere.

Took a few hours to do, but totally worth it. I'm surprised I didn't do
this sooner.

Also updated icarus gmake install rule to copy over the database.
2016-02-09 22:51:12 +11:00
Tim Allen 3414c8c8df Update to v096r06 release.
byuu says:

This WIP finally achieves the vision I've had for icarus.

I also fixed a mapping issue with Cx4 that, oddly enough, only caused
the "2" from the Mega Man X2 title screen to disappear.

[Editor's note - "the vision for icarus" was described in a separate,
public forum post: http://board.byuu.org/phpbb3/viewtopic.php?p=20584
Quoting for posterity:

    icarus is now a full-fledged part of higan, and will be bundled with
    each higan WIP as well. This will ensure that in the future, the
    exact version of icarus you need to run higan will be included right
    along with it. As of this WIP, physical manifest files are now truly
    and entirely optional.

    From now on, you can associate your ROM image files with higan's
    main binary, or drop them directly on top of it, to load and play
    your games.

    Furthermore, there are two new menu options that appear under the
    library menu when icarus is present:

    - "Load ROM File ..." => gives you a single-file selection dialog to
      import (and if possible) run the game
    - "Import ROM Files ..." => gives you a multi-file import dialog
      with checkboxes to pull in multiple games at once

    Finally, as before, icarus can generate manifest.bml files for
    folders that lack them.

    For people who like the game folder and library system, nothing's
    changed. Keep using higan as you have been.

    For people who hate it, you can now use higan like your classic
    emulators. Treat the "Library->{System Name}" entries as your
    "favorites" list: the games you actually play. Treat the
    "Library->Load ROM" as your standard open file dialog in other
    emulators. And finally, treat "Advanced->Game Library" as your save
    data path for cheat codes, save states, save RAM, etc.

]
2016-01-15 21:07:37 +11:00
Tim Allen 47d4bd4d81 Update to v096r01 release.
byuu says:

Changelog:

- restructured the project and removed a whole bunch of old/dead
  directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
  functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
  region=(ntsc,pal) ... the former was too obtuse

If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.

It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.
2015-12-30 17:54:59 +11:00