byuu says:
Changelog:
- moved Thread, Scheduler, Cheat functionality into emulator/ for
all cores
- start of actual Mega Drive emulation (two 68K instructions)
I'm going to be rather terse on MD emulation, as it's too early for any
meaningful dialogue here.
byuu says:
Changelog:
- (hopefully) fixed BS Memory and Sufami Turbo slot loading
- ported GB, GBA, WS cores to use nall/vfs
- completely removed loadRequest, saveRequest functionality from
Emulator::Interface and ui-tomoko
- loadRequest(folder) is now load(folder)
- save states now use a shared Emulator::SerializerVersion string
- whenever this is bumped, all older states will break; but this makes
bumping state versions way easier
- also, the version string makes it a lot easier to identify
compatibility windows for save states
- SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr]
NOTE: Super Game Boy loading is currently broken, and I'm not entirely
sure how to fix it :/
The file loading handoff was -really- complicated, and so I'm kind of
at a loss ... so for now, don't try it.
Everything else should theoretically work, so please report any bugs
you find.
So, this is pretty much it. I'd be very curious to hear feedback from
people who objected to the old nall/stream design, whether they are
happy with the new file loading system or think it could use further
improvements.
The 16-bit VRAM turned out to be a wash on performance (roughly the same
as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The
main reason for this was because Yoshi's Island was breaking horribly
until I changed the vramRead, vramWrite functions to take uint15 instead
of uint16.
I suspect the issue is we're using uint16s in some areas now that need
to be uint15, and this game is setting the VRAM address to 0x8000+,
causing us to go out of bounds on memory accesses.
But ... I want to go ahead and do something cute for fun, and just because
we can ... and this new interface is so incredibly perfect for it!! I
want to support an SNES unit with 128KiB of VRAM. Not out of the box,
but as a fun little tweakable thing. The SNES was clearly designed to
support that, they just didn't use big enough VRAM chips, and left one
of the lines disconnected. So ... let's connect it anyway!
In the end, if we design it right, the only code difference should be
one area where we mask by 15-bits instead of by 16-bits.
byuu says:
Changelog:
- Super Famicom core converted to use nall/vfs
- excludes Super Game Boy; since that's invoked from inside the GB core
This was definitely the major obstacle to test nall/vfs'
applicability. Things worked out pretty great in the end.
We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB
(cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes
a very large source of indirection. Before it was: "coprocessor <=>
cartridge <=> interface" for loading and saving data, and now it's just
"coprocessor <=> cartridge". And it may make sense to eventually turn
this into just "cartridge -> coprocessor" by making each coprocessor
class handle its own markup parsing.
It's nice to have all the manifest parsing in one location (well, sans
MSU1); but it's also nice for loading/unloading to be handled by each
coprocessor itself. So I'll have to think longer about that one.
I've also started handling Interface::save() differently. Instead of
keeping track of memory IDs and filenames, and iterating through that
vector of objects ... instead I now have a system that mirrors the markup
parsing on loading, but handles saving instead. This was actually the
reason the code size savings weren't more significant, but I like this
style more. As before, it removes an extra level of indirection.
So ... next up, I need to port over the GB, then GBA, then WS
cores. These shouldn't take too long since they're all very simple with
just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then
after that, gut all the old stream stuff from nall and higan. Kill the
(load,save)Request stuff, rename the load(Gamepak)Request to something
simpler, and then we should be good.
Anyway ... these are some huge changes.
byuu says:
Changelog:
- finished cleaning up the SFC core to my new coding conventions
- removed sfc/controller/usart (superseded by 21fx)
- hid Synchronize Video option from the menu (still in the configuration
file)
Pretty much the only minor detail left is some variable names in the
SA-1 core that really won't look good at all if I move to camelCase,
so I'll have to rethink how I handle those. It's probably a good area
to attempt using BitFields, to see how it impacts performance. But I'll
do that in a test branch first.
But for the most part, this should be the end of the gigantic diffs (this
one was 174KiB), at least for the SFC/WS cores. Still have the FC/GB/GBA
cores to clean up more fully. Assuming we don't spot any new regressions,
we should be ~95% out of the woods on code cleanups breaking things.
byuu says:
Changelog:
- higan now uses Natural<Size>/Integer<Size> for its internal types
- Super Famicom emulation now uses uint24 instead of uint for bus
addresses (it's a 24-bit bus)
- cleaned up gb/apu MMIO writes
- cleaned up sfc/coprocessor/msu1 MMIO writes
- ~3% speed penalty
I've wanted to do that 24-bit bus thing for so long, but have always
been afraid of the speed impact. It's probably going to hurt
balanced/performance once they compile again, but it wasn't significant
enough to harm the accuracy core's frame rate, thankfully. Only lost one
frame per second.
The GBA core handlers are clearly going to take a lot more work. The
bit-ranges will make it substantially easier to handle, though. Lots of
32-bit registers where certain values span multiple bytes, but we have
to be able to read/write at byte-granularity.
byuu says:
Got it. Wow, that didn't hurt nearly as much as I thought it was going
to.
Dropped from 127.5fps to 123.5fps to use Natural/Integer for
(u)int(8,16,32,64).
That's totally worth the cost.
byuu says:
Changelog:
- restructured the project and removed a whole bunch of old/dead
directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
region=(ntsc,pal) ... the former was too obtuse
If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.
It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.
byuu says:
Changelog:
- added Cocoa target: higan can now be compiled for OS X Lion
[Cydrak, byuu]
- SNES/accuracy profile hires color blending improvements - fixes
Marvelous text [AWJ]
- fixed a slight bug in SNES/SA-1 VBR support caused by a typo
- added support for multi-pass shaders that can load external textures
(requires OpenGL 3.2+)
- added game library path (used by ananke->Import Game) to
Settings->Advanced
- system profiles, shaders and cheats database can be stored in "all
users" shared folders now (eg /usr/share on Linux)
- all configuration files are in BML format now, instead of XML (much
easier to read and edit this way)
- main window supports drag-and-drop of game folders (but not game files
/ ZIP archives)
- audio buffer clears when entering a modal loop on Windows (prevents
audio repetition with DirectSound driver)
- a substantial amount of code clean-up (probably the biggest
refactoring to date)
One highly desired target for this release was to default to the optimal
drivers instead of the safest drivers, but because AMD drivers don't
seem to like my OpenGL 3.2 driver, I've decided to postpone that. AMD
has too big a market share. Hopefully with v093 officially released, we
can get some public input on what AMD doesn't like.
byuu says:
This will be another massive diff from the previous version.
All of higan was updated to use the new foo& bar syntax, and I also
updated switch statements to be consistent as well (but not in the
disassemblers, was starting to get an RSI just from what I already did.)
phoenix/{windows, cocoa, qt} need to be updated to use "string foo"
instead of "const string& foo", and after that, the major diffs should
be finished.
This archive is the first time I'm posting my copy-on-write,
size+capacity nall::string class, so any feedback on that is welcome as
well.
[No prior releases were posted to the WIP thread. -Ed.]
byuu says:
Super Famicom mapping system has been reworked as discussed with the
mask= changes. offset becomes base, mode is gone. Also added support for
comma-separated fields in the address fields, to reduce the number of
map lines needed.
<?xml version="1.0" encoding="UTF-8"?>
<cartridge region="NTSC">
<superfx revision="2">
<rom name="program.rom" size="0x200000"/>
<ram name="save.rwm" size="0x8000"/>
<map id="io" address="00-3f,80-bf:3000-32ff"/>
<map id="rom" address="00-3f:8000-ffff" mask="0x8000"/>
<map id="rom" address="40-5f:0000-ffff"/>
<map id="ram" address="00-3f,80-bf:6000-7fff" size="0x2000"/>
<map id="ram" address="70-71:0000-ffff"/>
</superfx>
</cartridge>
Or in BML:
cartridge region=NTSC
superfx revision=2
rom name=program.rom size=0x200000
ram name=save.rwm size=0x8000
map id=io address=00-3f,80-bf:3000-32ff
map id=rom address=00-3f:8000-ffff mask=0x8000
map id=rom address=40-5f:0000-ffff
map id=ram address=00-3f,80-bf:6000-7fff size=0x2000
map id=ram address=70-71:0000-ffff
As a result of the changes, old mappings will no longer work. The above
XML example will run Super Mario World 2: Yoshi's Island. Otherwise,
you'll have to write your own.
All that's left now is to work some sort of database mapping system in,
so I can start dumping carts en masse.
The NES changes that FitzRoy asked for are mostly in as well.
Also, part of the reason I haven't released a WIP ... but fuck it, I'm
not going to wait forever to post a new WIP.
I've added a skeleton driver to emulate Campus Challenge '92 and
Powerfest '94. There's no actual emulation, except for the stuff I can
glean from looking at the pictures of the board. It has a DSP-1 (so
SR/DR registers), four ROMs that map in and out, RAM, etc.
I've also added preliminary mapping to upload high scores to a website,
but obviously I need the ROMs first.
byuu says:
Basically just a project rename, with s/bsnes/higan and the new icon
from lowkee added in.
It won't compile on Windows because I forgot to update the resource.rc
file, and a path transform command isn't working on Windows.
It was really just meant as a starting point, so that v091 WIPs can flow
starting from .00 with the new name (it overshadows bsnes v091, so
publicly speaking this "shouldn't exist" and will probably be deleted
from Google Code when v092 is ready.)