byuu says:
Changelog:
- added (poorly-named) castable<To, With> template
- Z80 debugger rewritten to make declaring instructions much simpler
- Z80 has more instructions implemented; supports displacement on
(IX), (IY) now
- added `Processor::M68K::Bus` to mirror `Processor::Z80::Bus`
- it does add a pointer indirection; so I'm not sure if I want to
do this for all of my emulator cores ...
byuu says:
Changelog:
- rewrote the Z80 core to properly handle 0xDD (IX0 and 0xFD (IY)
prefixes
- added Processor::Z80::Bus as a new type of abstraction
- all of the instructions implemented have their proper T-cycle counts
now
- added nall/certificates for my public keys
The goal of `Processor::Z80::Bus` is to simulate the opcode fetches being
2-read + 2-wait states; operand+regular reads/writes being 3-read. For
now, this puts the cycle counts inside the CPU core. At the moment, I
can't think of any CPU core where this wouldn't be appropriate. But it's
certainly possible that such a case exists. So this may not be the
perfect solution.
The reason for having it be a subclass of Processor::Z80 instead of
virtual functions for the MasterSystem::CPU core to define is due to
naming conflicts. I wanted the core to say `in(addr)` and have it take
the four clocks. But I also wanted a version of the function that didn't
consume time when called. One way to do that would be for the core to
call `Z80::in(addr)`, which then calls the regular `in(addr)` that goes to
`MasterSystem::CPU::in(addr)`. But I don't want to put the `Z80::`
prefix on all of the opcodes. Very easy to forget it, and then end up not
consuming any time. Another is to use uglier names in the
`MasterSystem::CPU` core, like `read_`, `write_`, `in_`, `out_`, etc. But,
yuck.
So ... yeah, this is an experiment. We'll see how it goes.
byuu says:
Changelog:
- new md/bus/ module for bus reads/writes
- abstracts byte/word accesses wherever possible (everything but
RAM; forces all but I/O to word, I/O to byte)
- holds the system RAM since that's technically not part of the
CPU anyway
- added md/controller and md/system/peripherals
- added emulation of gamepads
- added stub PSG audio output (silent) to cap the framerate at 60fps
with audio sync enabled
- fixed VSRAM reads for plane vertical scrolling (two bugs here: add
instead of sub; interlave plane A/B)
- mask nametable read offsets (can't exceed 8192-byte nametables
apparently)
- emulated VRAM/VSRAM/CRAM reads from VDP data port
- fixed sprite width/height size calculations
- added partial emulation of 40-tile per scanline limitation (enough
to fix Sonic's title screen)
- fixed off-by-one sprite range testing
- fixed sprite tile indexing
- Vblank happens at Y=224 with overscan disabled
- unsure what happens when you toggle it between Y=224 and Y=240
... probably bad things
- fixed reading of address register for ADDA, CMPA, SUBA
- fixed sign extension for MOVEA effect address reads
- updated MOVEM to increment the read addresses (but not writeback)
for (aN) mode
With all of that out of the way, we finally have Sonic the Hedgehog
(fully?) playable. I played to stage 1-2 and through the special stage,
at least. EDIT: yeah, we probably need HIRQs for Labyrinth Zone.
Not much else works, of course. Most games hang waiting on the Z80, and
those that don't (like Altered Beast) are still royally screwed. Tons of
features still missing; including all of the Z80/PSG/YM2612.
A note on the perihperals this time around: the Mega Drive EXT port is
basically identical to the regular controller ports. So unlike with the
Famicom and Super Famicom, I'm inheriting the exension port from the
controller class.