mirror of https://github.com/bsnes-emu/bsnes.git
9 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Tim Allen | bdc100e123 |
Update to v102r02 release.
byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode. |
|
Tim Allen | ca277cd5e8 |
Update to v100r14 release.
byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP. |
|
Tim Allen | 07995c05a5 |
Update to v100 release.
byuu says: higan has finally reached v100! I feel it's important to stress right away that this is not "version 1.00", nor is it a major milestone release. Rather than arbitrary version numbers, all of my software simply bumps version numbers by one for each official release. As such, higan v100 is simply higan's 100th release. That said, the primary focus of this release has been code clean-ups. These are always somewhat dangerous in that regressions are possible. We've tested through sixteen WIP revisions, one of which was open to the public, to try and minimize any regressions. But all the same, please report any regressions if you discover any. Changelog (since v099): FC: render during pixels 1-256 instead of 0-255 [hex_usr] FC: rewrote controller emulation code SFC: 8% speedup over the previous release thanks to PPU optimizations SFC: fixed nasty DB address wrapping regression from v099 SFC: USART developer controller removed; superseded by 21fx SFC: Super Multitap option removed from controller port 1; ports renamed 2-5 SFC: hidden option to experiment with 128KB VRAM (strictly for novelty) higan: audio volume no longer divided by number of audio streams higan: updated controller polling code to fix possible future mapping issues higan: replaced nall/stream with nall/vfs for file-loading subsystem tomoko: can now load multi-slotted games via command-line tomoko: synchronize video removed from UI; still available in the settings file tomoko, icarus: can navigate to root drive selection on Windows all: major code cleanups and refactoring (~1MB diff against v099) Note 1: the audio volume change means that SGB and MSU1 games won't lose half the volume on the SNES sounds anymore. However, if one goes overboard and drives the sound all the way to max volume with the MSU1, clamping may occur. The obvious solution is not to drive volume that high (it will vastly overpower the SNES audio, which usually never exceeds 25% volume.) Another option is to lower the volume in the audio settings panel to 50%. In general, neither is likely to ever be necessary. Note 2: the synchronize video option was hidden from the UI because it is no longer useful. With the advent of compositors, the loss of the complicated timing settings panel, support for the WonderSwan and its 75hz display, the need to emulate variable refresh rate behaviors in the Game Boy, the unfortunate latency spike and audio distortion caused by long Vsync pauses, and the arrival of adaptive sync technology ... it no longer makes sense to present this option. However, as stated, you can edit settings.bml to enable this option anyway if you insist and understand the aforementioned risks. Changelog (since v099r16 open beta): - fixed MSU1 audio sign extension - fixed compilation with SGB support disabled - icarus can now navigate to root directory - fixed compilation issues with OS X port - (hopefully) fixed label height issue with hiro that affected icarus import dialog - (mostly) fixed BS Memory, Sufami Turbo slot loading Errata: - forgot to remove the " - Slot A", " - Slot B" suffixes for Sufami Turbo slot loading - this means you have to navigate up one folder and then into Sufami Turbo/ to load games for this system - moving WonderSwan orientation controls to the device slot is causing some nastiness - can now select orientation from the main menu, but it doesn't rotate the display |
|
Tim Allen | a816998122 |
Update to v099r10 release.
byuu says: Changelog: - higan/profile/ => higan/systems/ [temporary; unless we can't think of a better base folder name] - god-damn-better-have fixed the input polling bug - re-added command-line and drag-and-drop loading - command-line loading can now load multiple folders at once (SGB+GB game; Sufami Turbo+Slot A+Slot B; etc) - if you load just the base cart, it'll present you with a dialog to optionally load slotted cart(s) - MSU1 now goes through nall/vfs instead of directly accessing the filesystem - Famicom Cartridge, PPU cores updated to newer programming style - there's countless opportunity for BitField and .bits() in the PPU ... but I'm worried about breaking things If anyone has a working MSU1 game and can test the changes out, that'd be appreciated. I still don't have a test ROM on my dev box. I wouldn't worry too much about extensively testing the Famicom PPU changes just yet ... I'm still struggling with what to name the structs inside the classes between all of my emulators, and the BitField/.bits() changes will be much more important to test at a later date. The only use case left for Emulator::Interface::path(uint id) is for 21fx emulation. This peripheral loads a DLL/SO via LoadLibrary/dlopen, which do not have any official ways to open a file in RAM. I'm very hesitant to use the portable trick of writing the memory to a temporary file, loading it, and deleting the temporary file once done ... it's a real waste of disk activity. I might make something like vfs::file::isVirtual->bool,path()->string to get around this. But even once I do, the underlying LoadLibrary/dlopen call is still going to be direct disk access. |
|
Tim Allen | e2ee6689a0 |
Update to v098r06 release.
byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad. |
|
Tim Allen | 19e1d89f00 |
Update to v098r01 release.
byuu says: Changelog: - SFC: balanced profile removed - SFC: performance profile removed - SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed - SFC: Coprocessor, Controller (and expansion port) shared Thread code merged to SFC::Cothread - Cothread here just means "Thread with CPU affinity" (couldn't think of a better name, sorry) - SFC: CPU now has vector<Thread*> coprocessors, peripherals; - this is the beginning of work to allow expansion port devices to be dynamically changed at run-time - ruby: all audio drivers default to 48000hz instead of 22050hz now if no frequency is assigned - note: the WASAPI driver can default to whatever the native frequency is; doesn't have to be 48000hz - tomoko: removed the ability to change the frequency from the UI (but it will display the frequency used) - tomoko: removed the timing settings panel - the goal is to work toward smooth video via adaptive sync - the model is broken by not being in control of the audio frequency anyway - it's further broken by PAL running at 50hz and WSC running at 75hz - it was always broken anyway by SNES interlace timing varying from progressive timing - higan: audio/ stub created (for now, it's just nall/dsp/ moved here and included as a header) - higan: video/ stub created - higan/GNUmakefile: now includes build rules for essential components (libco, emulator, audio, video) The audio changes are in preparation to merge wareya's awesome WASAPI work without the need for the nall/dsp resampler. |
|
Tim Allen | 4b29f4bad7 |
Update to v097r15 release.
byuu says: Changelog: - higan now uses Natural<Size>/Integer<Size> for its internal types - Super Famicom emulation now uses uint24 instead of uint for bus addresses (it's a 24-bit bus) - cleaned up gb/apu MMIO writes - cleaned up sfc/coprocessor/msu1 MMIO writes - ~3% speed penalty I've wanted to do that 24-bit bus thing for so long, but have always been afraid of the speed impact. It's probably going to hurt balanced/performance once they compile again, but it wasn't significant enough to harm the accuracy core's frame rate, thankfully. Only lost one frame per second. The GBA core handlers are clearly going to take a lot more work. The bit-ranges will make it substantially easier to handle, though. Lots of 32-bit registers where certain values span multiple bytes, but we have to be able to read/write at byte-granularity. |
|
Tim Allen | 6c83329cae |
Update to v097r13 release.
byuu says: I refactored my schedulers. Added about ten lines to each scheduler, and removed about 100 lines of calling into internal state in the scheduler for the FC,SFC cores and about 30-40 lines for the other cores. All of its state is now private. Also reworked all of the entry points to static auto Enter() and auto main(). Where Enter() handles all the synchronization stuff, and main() doesn't need the while(true); loop forcing another layer of indentation everywhere. Took a few hours to do, but totally worth it. I'm surprised I didn't do this sooner. Also updated icarus gmake install rule to copy over the database. |
|
Tim Allen | 47d4bd4d81 |
Update to v096r01 release.
byuu says: Changelog: - restructured the project and removed a whole bunch of old/dead directives from higan/GNUmakefile - huge amounts of work on hiro/cocoa (compiles but ~70% of the functionality is commented out) - fixed a masking error in my ARM CPU disassembler [Lioncash] - SFC: decided to change board cic=(411,413) back to board region=(ntsc,pal) ... the former was too obtuse If you rename Boolean (it's a problem with an include from ruby, not from hiro) and disable all the ruby drivers, you can compile an OS X binary, but obviously it's not going to do anything. It's a boring WIP, I just wanted to push out the project structure change now at the start of this WIP cycle. |