byuu says:
The biggest change was improving WonderSwan emulation. With help from
trap15, I tracked down a bug where I was checking the wrong bit for
reverse DMA transfers. Then I also emulated VTOTAL to support variable
refresh rate. Then I improved HyperVoice emulation which should be
unsigned samples in three of four modes. That got Fire Lancer running
great. I also rewrote the disassembler. The old one disassembled many
instructions completely wrong, and deviated too much from any known x86
syntax. I also emulated some of the quirks of the V30 (two-byte POP into
registers fails, SALC is just XLAT mirrored, etc) which probably don't
matter unless someone tries to run code to verify it's a NEC CPU and not
an Intel CPU, but hey, why not?
I also put more work into the MSX skeleton, but it's still just a
skeleton with no real emulation yet.
byuu says:
Changelog:
- fixed bug in Emulator::Game::Memory::operator bool()
- nall: renamed view<string> back to `string_view`
- nall:: implemented `array_view`
- Game Boy: split cartridge-specific input mappings (rumble,
accelerometer) to their own separate ports
- Game Boy: fixed MBC7 accelerometer x-axis
- icarus: Game Boy, Super Famicom, Mega Drive cores output internal
header game titles to heuristics manifests
- higan, icarus, hiro/gtk: improve viewport geometry configuration;
fixed higan crashing bug with XShm driver
- higan: connect Video::poll(),update() functionality
- hiro, ruby: several compilation / bugfixes, should get the macOS
port compiling again, hopefully [Sintendo]
- ruby/video/xshm: fix crashing bug on window resize
- a bit hacky; it's throwing BadAccess Xlib warnings, but they're
not fatal, so I am catching and ignoring them
- bsnes: removed Application::Windows::onModalChange hook that's no
longer needed [Screwtape]
byuu says:
I've added tool tips to hiro for Windows, GTK, and Qt. I'm unsure how to
add them for Cocoa. I wasted am embarrassing ~14 hours implementing tool
tips from scratch on Windows, because the `TOOLTIPS_CLASS` widget just
absolutely refused to show up, no matter what I tried. As such, they're
not quite 100% native, but I would really appreciate any patch
submissions to help improve my implementation.
I added tool tips to all of the confusing settings in bsnes. And of
course, for those of you who don't like them, there's a configuration
file setting to turn them off globally.
I also improved Mega Drive handling of the Game Genie a bit, and
restructured the way the Settings class works in bsnes.
Starting now, I'm feature-freezing bsnes and higan. From this point
forward:
- polishing up and fixing bugs caused by the ruby/hiro changes
- adding DRC to XAudio2, and maybe exclusive mode to WGL
- correcting FEoEZ (English) to load and work again out of the box
Once that's done, a final beta of bsnes will go out, I'll fix any
reported bugs that I'm able to, and then v107 should be ready. This time
with higan being functional, but marked as v107 beta. v108 will restore
higan to production status again, alongside bsnes.
byuu says:
Everything *should* be working again, but of course that won't
actually be the case. Here's where things stand:
- bsnes, higan, icarus, and genius compile and run fine on FreeBSD
with GTK
- ruby video and audio drivers are untested on Windows, macOS, and
Linux
- hiro is untested on macOS
- bsnes' status bar is not showing up properly with hiro/qt
- bsnes and higan's about screen is not showing up properly with
hiro/qt (1x1 window size)
- bsnes on Windows crashes often when saving states, and I'm not sure
why ... it happens inside Encode::RLE
- bsnes on Windows crashes with ruby.input.windows (unsure why)
- bsnes on Windows fails to show the verified emblem on the status bar
properly
- hiro on Windows flickers when changing tabs
To build the Windows bsnes and higan ports, use
ruby="video.gdi audio.directsound"
Compilation error logs for Linux will help me fix the inevitable list of
typos there. I can fix the typos on other platforms, I just haven't
gotten to it yet.
byuu says:
The problems with the Windows and Qt4 ports have all been resolved,
although there's a fairly gross hack on a few Qt widgets to not destruct
once Application::quit() is called to avoid a double free crash (I'm
unsure where Qt is destructing the widgets internally.) The Cocoa port
compiles again at least, though it's bound to have endless problems. I
improved the Label painting in the GTK ports, which fixes the background
color on labels inside TabFrame widgets.
I've optimized the Makefile system even further.
I added a "redo state" command to bsnes, which is created whenever you
load the undo state. There are also hotkeys for both now, although I
don't think they're really something you want to map hotkeys to.
I moved the nall::Locale object inside hiro::Application, so that it can
be used to translate the BrowserDialog and MessageDialog window strings.
I improved the Super Game Boy emulation of `MLT_REQ`, fixing Pokemon
Yellow's custom border and probably more stuff.
Lots of other small fixes and improvements. Things are finally stable
once again after the harrowing layout redesign catastrophe.
Errata:
- ICD::joypID should be set to 3 on reset(). joypWrite() may as well
take uint1 instead of bool.
- hiro/Qt: remove pWindow::setMaximumSize() comment; found a
workaround for it
- nall/GNUmakefile: don't set object.path if it's already set (allow
overrides before including the file)
byuu says:
This is probably the largest code-change diff I've done in years.
I spent four days working 10-16 hours a day reworking layouts in hiro
completely.
The result is we now have TableLayout, which will allow for better
horizontal+vertical combined alignment.
Windows, GTK2, and now GTK3 are fully supported.
Windows is getting the initial window geometry wrong by a bit.
GTK2 and GTK3 work perfectly. I basically abandoned trying to detect
resize signals, and instead keep a list of all hiro windows that are
allocated, and every time the main loop runs, it will query all of them
to see if they've been resized. I'm disgusted that I have to do this,
but after fighting with GTK for years, I'm about sick of it. GTK was
doing this crazy thing where it would trigger another size-allocate
inside of a previous size-allocate, and so my layouts would be halfway
through resizing all the widgets, and then the size-allocate would kick
off another one. That would end up leaving the rest of the first layout
loop with bad widget sizes. And if I detected a second re-entry and
blocked it, then the entire window would end up with the older geometry.
I started trying to build a message queue system to allow the second
layout resize to occur after the first one completed, but this was just
too much madness, so I went with the simpler solution.
Qt4 has some geometry problems, and doesn't show tab frame layouts
properly yet.
Qt5 causes an ICE error and tanks my entire Xorg display server, so ...
something is seriously wrong there, and it's not hiro's fault. Creating
a dummy Qt5 application without even using hiro, just int main() {
TestObject object; } with object performing a dynamic\_cast to a derived
type segfaults. Memory is getting corrupted where GCC allocates the
vtables for classes, just by linking in Qt. Could be somehow related to
the -fPIC requirement that only Qt5 has ... could just be that FreeBSD
10.1 has a buggy implementation of Qt5. I don't know. It's beyond my
ability to debug, so this one's going to stay broken.
The Cocoa port is busted. I'll fix it up to compile again, but that's
about all I'm going to do.
Many optimizations mean bsnes and higan open faster. GTK2 and GTK3 both
resize windows very quickly now.
higan crashes when you load a game, so that's not good. bsnes works
though.
bsnes also has the start of a localization engine now. Still a long way
to go.
The makefiles received a rather substantial restructuring. Including the
ruby and hiro makefiles will add the necessary compilation rules for
you, which also means that moc will run for the qt4 and qt5 targets, and
windres will run for the Windows targets.
byuu says:
Changelog:
- hiro: added Label::set(Background,Foreground)Color (not implemented
on Cocoa backend)
- hiro: added (Horizontal,Vertical)Layout::setPadding()
- setMargin(m) is now an alias to setPadding({m, m, m, m})
- hiro/Windows: update Label rendering to draw to an offscreen canvas
to prevent flickering
- sfc: reverted back to 224/240-line height (from 223/239-line height
in earlier v106 WIPs)
- bsnes: new multi-segment status bar added
- bsnes: exiting fullscreen mode will resize and recenter window
- this is required; the window geometry gets all scrambled when
toggling fullscreen mode
- bsnes: updated to a new logo [Ange Albertini]
Errata:
- hiro/Windows: try to paint Label backgroundColor quicker to avoid
startup flicker
- `WM_ERASEBKGND` fallthrough to `WM_PAINT` seems to work
- hiro/Qt: use Window backgroundColor for Label when no Label
backgroundColor set
- bsnes: update size multipliers in presentation.cpp to 224/240 (main
window size is off in this WIP)
byuu says:
Changelog:
- gb: added accelerometer X-axis, Y-Axis inputs¹
- gb: added rumble input¹
- gb/mbc5: added rumble support²
- gb/mbc6: added skeleton driver, but it doesn't boot Net de Get
- gb/mbc7: added mostly complete driver (only missing EEPROM), but it
doesn't boot Kirby Tilt 'n' Tumble
- gb/tama: added leap year assignment
- tomoko: fixed macOS compilation [MerryMage]
- hiro/cocoa: fix table cell redrawing on updates and automatic column
resizing [ncbncb]
- hiro/cocoa: fix some weird issue with clicking table view checkboxes
on Retina displays [ncbncb]
- icarus: enhance Game Boy heuristics³
- nall: fix three missing return statements [Jonas Quinn]
- ruby: hopefully fixed all compilation errors reported by Screwtape
et al⁴
¹: because there's no concept of a controller for cartridge inputs,
I'm attaching to the base platform for now. An idea I had was to make
separate ports for each cartridge type ... but this would duplicate the
rumble input between MBC5 and MBC7. And would also be less discoverable.
But it would be more clean in that users wouldn't think the Game Boy
hardware had this functionality. I'll think about it.
²: it probably won't work yet. Rumble isn't documented anywhere, but
I dug through an emulator named GEST and discovered that it seems to use
bit 3 of the RAM bank select to be rumble. I don't know if it sets the
bit for rumbling, then clears when finished, or if it sets it and then
after a few milliseconds it stops rumbling. I couldn't test on my
FreeBSD box because SDL 1.2 doesn't support rumble, udev doesn't exist
on FreeBSD, and nobody has ever posted any working code for how to use
evdev (or whatever it's called) on FreeBSD.
³: I'm still thinking about specifying the MBC7 RAM as EEPROM, since
it's not really static RAM.
⁴: if possible, please test all drivers if you can. I want to ensure
they're all working. Especially let me know if the following work:
macOS: input.carbon Linux: audio.pulseaudiosimple, audio.ao (libao)
If I can confirm these are working, I'm going to then remove them from
being included with stock higan builds.
I'm also considering dropping SDL video on Linux/BSD. XShm is much
faster and supports blurring. I may also drop SDL input on Linux, since
udev works better. That will free a dependency on SDL 1.2 for building
higan. FreeBSD is still going to need it for joypad support, however.
byuu says (in the WIP forum):
Changelog:
- higan: cheat codes accept = and ? separators now
- the new preferred code format is: address=value or
address=if-match?value
- the old code format of address/value and address/if-match/value
will continue to work
- higan: cheats.bml is no longer included with the base distribution
- mightymo stopped updating it in 2015, and it's not source code;
it can still be pulled in from older releases
- fc: improved PAL mode timing; use PAL APU timing tables; fix PAL
noise period table [hex\_usr]
- md: support aborting a Z80 bus wait in order to capture save states
without freezing
- note that this will violate accuracy; but in practice a slight
desync is better than an emulator deadlock
- sfc: revert DSP ENDX randomization for now (want to research it more
before deploying in an official release)
- sfc: fix Super Famicom.sys/manifest.bml APU RAM size [hex\_usr]
- tomoko: cleaned up make install rules
- hiro/cocoa: use ABGR for pixel data [Sintendo]
Note: I forgot to change the command-line and drag-and-drop separator
from : to | in this WIP. However, it is corrected in the v103 official
binary and source published on download.byuu.org. Sorry about that, I
know it makes the Git repository history more difficult. I'm not
concerned whether the : → | change is part of v103 or v103r01 in the
repository, and will leave this to your discretion, Screwtape.
I also still need to set the VDP bit to indicate PAL mode in the Mega
Drive core. This is what happens when I have 47 things I have to do,
given how lousy my memory is. I miss things.
byuu says:
Changelog:
- I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it
- if it's really invalid C++, then GCC needs to stop accepting it
in strict `-std=c++14` mode
- Emulator::Interface::Information::resettable is gone
- Emulator::Interface::reset() is gone
- FC, SFC, MD cores updated to remove soft reset behavior
- split GameBoy::Interface into GameBoyInterface,
GameBoyColorInterface
- split WonderSwan::Interface into WonderSwanInterface,
WonderSwanColorInterface
- PCE: fixed off-by-one scanline error [hex_usr]
- PCE: temporary hack to prevent crashing when VDS is set to < 2
- hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#)
types to (u)int_(#)t types
- icarus: replaced usage of unique with strip instead (so we don't
mess up frameworks on macOS)
- libco: added macOS-specific section marker [Ryphecha]
So ... the major news this time is the removal of the soft reset
behavior. This is a major!! change that results in a 100KiB diff file,
and it's very prone to accidental mistakes!! If anyone is up for
testing, or even better -- looking over the code changes between v102r01
and v102r02 and looking for any issues, please do so. Ideally we'll want
to test every NES mapper type and every SNES coprocessor type by loading
said games and power cycling to make sure the games are all cleanly
resetting. It's too big of a change for me to cover there not being any
issues on my own, but this is truly critical code, so yeah ... please
help if you can.
We technically lose a bit of hardware documentation here. The soft reset
events do all kinds of interesting things in all kinds of different
chips -- or at least they do on the SNES. This is obviously not ideal.
But in the process of removing these portions of code, I found a few
mistakes I had made previously. It simplifies resetting the system state
a lot when not trying to have all the power() functions call the reset()
functions to share partial functionality.
In the future, the goal will be to come up with a way to add back in the
soft reset behavior via keyboard binding as with the Master System core.
What's going to have to happen is that the key binding will have to send
a "reset pulse" to every emulated chip, and those chips are going to
have to act independently to power() instead of reusing functionality.
We'll get there eventually, but there's many things of vastly greater
importance to work on right now, so it'll be a while. The information
isn't lost ... we'll just have to pull it out of v102 when we are ready.
Note that I left the SNES reset vector simulation code in, even though
it's not possible to trigger, for the time being.
Also ... the Super Game Boy core is still disconnected. To be honest, it
totally slipped my mind when I released v102 that it wasn't connected
again yet. This one's going to be pretty tricky to be honest. I'm
thinking about making a third GameBoy::Interface class just for SGB, and
coming up with some way of bypassing platform-> calls when in this
mode.
byuu says:
Changelog:
- nall::lstring -> nall::string_vector
- added IntegerBitField<type, lo, hi> -- hopefully it works correctly...
- Multitap 1-4 -> Super Multitap 2-5
- fixed SFC PPU CGRAM read regression
- huge amounts of SFC PPU IO register cleanups -- .bits really is lovely
- re-added the read/write(VRAM,OAM,CGRAM) helpers for the SFC PPU
- but they're now optimized to the realities of the PPU (16-bit data
sizes / no address parameter / where appropriate)
- basically used to get the active-display overrides in a unified place;
but also reduces duplicate code in (read,write)IO
byuu says:
Changelog:
- (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel
like they were contributing enough to be worth it]
- cleaned up nall::integer,natural,real functionality
- toInteger, toNatural, toReal for parsing strings to numbers
- fromInteger, fromNatural, fromReal for creating strings from numbers
- (string,Markup::Node,SQL-based-classes)::(integer,natural,real)
left unchanged
- template<typename T> numeral(T value, long padding, char padchar)
-> string for print() formatting
- deduces integer,natural,real based on T ... cast the value if you
want to override
- there still exists binary,octal,hex,pointer for explicit print()
formatting
- lstring -> string_vector [but using lstring = string_vector; is
declared]
- would be nice to remove the using lstring eventually ... but that'd
probably require 10,000 lines of changes >_>
- format -> string_format [no using here; format was too ambiguous]
- using integer = Integer<sizeof(int)*8>; and using natural =
Natural<sizeof(uint)*8>; declared
- for consistency with boolean. These three are meant for creating
zero-initialized values implicitly (various uses)
- R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees
up struct IO {} io; naming]
- SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {}
(status,registers); now
- still some CPU::Status status values ... they didn't really fit into
IO functionality ... will have to think about this more
- SFC CPU, PPU, SMP now use step() exclusively instead of addClocks()
calling into step()
- SFC CPU joypad1_bits, joypad2_bits were unused; killed them
- SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it
- SFC PPU OAM moved into PPU::Object; since nothing else uses it
- the raw uint8[544] array is gone. OAM::read() constructs values from
the OAM::Object[512] table now
- this avoids having to determine how we want to sub-divide the two
OAM memory sections
- this also eliminates the OAM::synchronize() functionality
- probably more I'm forgetting
The FPS fluctuations are driving me insane. This WIP went from 128fps to
137fps. Settled on 133.5fps for the final build. But nothing I changed
should have affected performance at all. This level of fluctuation makes
it damn near impossible to know whether I'm speeding things up or slowing
things down with changes.
byuu says:
Changelog:
- fixed major nall/vector/prepend bug
- renamed hiro/ListView to hiro/TableView
- added new hiro/ListView control which is a simplified abstraction of
hiro/TableView
- updated higan's cheat database window and icarus' scan dialog to use
the new ListView control
- compilation works once again on all platforms (Windows, Cocoa, GTK,
Qt)
- the loki skeleton compiles once again (removed nall/DSP references;
updated port/device ID names)
Small catch: need to capture layout resize events internally in Windows
to call resizeColumns. For now, just resize the icarus window to get it
to use the full window width for list view items.
byuu says:
This release features improvements to all emulation cores, but most
substantially for the Game Boy core. All of blargg's test ROMs that pass
in gambatte now either pass in higan, or are off by 1-2 clocks (the
actual behaviors are fully emulated.) I consider the Game Boy core to
now be fairly accurate, but there's still more improvements to be had.
Also, what's sure to be a major feature for some: higan now has full
support for loading and playing ordinary ROM files, whether they have
copier headers, weird extensions, or are inside compressed archives. You
can load these games from the command-line, from the main Library menu
(via Load ROM Image), or via drag-and-drop on the main higan window. Of
course, fans of game folders and the library need not worry: that's
still there as well.
Also new, you can drop the (uncompressed) Game Boy Advance BIOS onto the
higan main window to install it into the correct location with the
correct file name.
Lastly, this release technically restores Mac OS X support. However,
it's still not very stable, so I have decided against releasing binaries
at this time. I'd rather not rush this and leave a bad first impression
for OS X users.
Changelog (since v096):
- higan: project source code hierarchy restructured; icarus directly
integrated
- higan: added software emulation of color-bleed, LCD-refresh,
scanlines, interlacing
- icarus: you can now load and import ROM files/archives from the main
higan menu
- NES: fixed manifest parsing for board mirroring and VRC pinouts
- SNES: fixed manifest for Star Ocean
- SNES: fixed manifest for Rockman X2,X3
- GB: enabling LCD restarts frame
- GB: emulated extra OAM STAT IRQ quirk required for GBVideoPlayer
(Shonumi)
- GB: VBK, BGPI, OBPI are readable
- GB: OAM DMA happens inside PPU core instead of CPU core
- GB: fixed APU length and sweep operations
- GB: emulated wave RAM quirks when accessing while channel is enabled
- GB: improved timings of several CPU opcodes (gekkio)
- GB: improved timings of OAM DMA refresh (gekkio)
- GB: CPU uses open collector logic; return 0xFF for unmapped memory
(gekkio)
- GBA: fixed sequencer enable flags; fixes audio in Zelda - Minish Cap
(Jonas Quinn)
- GBA: fixed disassembler masking error (Lioncash)
- hiro: Cocoa support added; higan can now be compiled on Mac OS X 10.7+
- nall: improved program path detection on Windows
- higan/Windows: moved configuration data from %appdata% to
%localappdata%
- higan/Linux,BSD: moved configuration data from ~/.config/higan to
~/.local/higan
byuu says:
Changelog:
- fixed S-DD1 RAM writes (Star Ocean audio fixed)
- applied all of the DMG test ROM fixes discussed earlier; passes many
more test ROMs now
- at least until the GBVideoPlayer is working: for debugging purposes,
CPU/PPU single-step now instead of sync just-in-time (~30% slower)
- fixed OS X crash on NSTextView (hopefully, would be very odd if not)
Unfortunately passing these test ROMs caused my favorite GB/GBC game to
break all of its graphics =(
Shin Megami Tensei - Devichil - Kuro no Sho (Japan) is all garbled now.
I'm really quite bummed by this ... but I guess I'll go through and
revert r04's fixes one at a time until I find what's causing it.
On the plus side, Astro Rabby is playable now. Still acts weird when
pressing B/A on the first screen, but the start button will start the
game.
EDIT: got it. Shin Megami Tensei - Devichil requires FF4F (VBK) to be
readable. Before, it was always returning 0x00. With my return 0xFF
patch, that broke. But it should be returning the VBK value, which also
fixes it. Also need to handle FF68/FF6A reads. Was really hoping that'd
help GBVideoPlayer too, but nope. It doesn't read any of those three
registers.
byuu says:
Changelog:
- fixed icarus to save settings properly
- fixed higan's full screen toggle on OS X
- increased "Add Codes" button width to avoid text clipping
- implemented cocoa/canvas.cpp
- added 1s delay after mapping inputs before re-enabling the window
(wasn't actually necessary, but already added it)
- fixed setEnabled(false) on Cocoa's ListView and TextEdit widgets
- updated nall::programpath() to use GetModuleFileName on Windows
- GB: system uses open collector logic, so unmapped reads return 0xFF,
not 0x00 (passes blargg's cpu_instrs again) [gekkio]
byuu says:
New update. Most of the work today went into eliminating hiro::Image
from all objects in all ports, replacing with nall::image. That took an
eternity.
Changelog:
- fixed crashing bug when loading games [thanks endrift!!]
- toggling "show status bar" option adjusts window geometry (not
supposed to recenter the window, though)
- button sizes improved; icon-only button icons no longer being cut off
byuu says:
Warning: this is not for the faint of heart. This is a very early,
unpolished, buggy release. But help testing/fixing bugs would be greatly
appreciated for anyone willing.
Requirements:
- Mac OS X 10.7+
- Xcode 7.2+
Installation Commands:
cd higan
gmake -j 4
gmake install
cd ../icarus
gmake -j 4
gmake install
(gmake install is absolutely required, sorry. You'll be missing key
files in key places if you don't run it, and nothing will work.)
(gmake uninstall also exists, or you can just delete the .app bundles
from your Applications folder, and the Dev folder on your desktop.)
If you want to use the GBA emulation, then you need to drop the GBA BIOS
into ~/Emulation/System/Game\ Boy\ Advance.sys\bios.rom
Usage:
You'll now find higan.app and icarus.app in your Applications folders.
First, run icarus.app, navigate to where you keep your game ROMs. Now
click the settings button at the bottom right, and check "Create
Manifests", and click OK. (You'll need to do this every time you run
icarus because there's some sort of bug on OSX saving the settings.) Now
click "Import", and let it bring in your games into ~/Emulation.
Note: "Create Manifests" is required. I don't yet have a pipe
implementation on OS X for higan to invoke icarus yet. If you don't
check this box, it won't create manifest.bml files, and your games won't
run at all.
Now you can run higan.app. The first thing you'll want to do is go to
higan->Preferences... and assign inputs for your gamepads. At the very
least, do it for the default controller for all the systems you want to
emulate.
Now this is very important ... close the application at this point so
that it writes your config file to disk. There's a serious crashing bug,
and if you trigger it, you'll lose your input bindings.
Now the really annoying part ... go to Library->{System} and pick the
game you want to play. Right now, there's a ~50% chance the application
will bomb. It seems the hiro::pListView object is getting destroyed, yet
somehow the internal Cocoa callbacks are being triggered anyway. I don't
know how this is possible, and my attempts to debug with lldb have been
a failure :(
If you're unlucky, the application will crash. Restart and try again. If
it crashes every single time, then you can try launching your game from
the command-line instead. Example:
open /Applications/higan.app \
--args ~/Emulation/Super\ Famicom/Zelda3.sfc/
Help wanted:
I could really, really, really use some help with that crashing on game
loading. There's a lot of rough edges, but they're all cosmetic. This
one thing is pretty much the only major show-stopping issue at the
moment, preventing a wider general audience pre-compiled binary preview.
byuu says:
Changelog:
- restructured the project and removed a whole bunch of old/dead
directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
region=(ntsc,pal) ... the former was too obtuse
If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.
It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.
byuu says:
This will easily be the biggest diff in the history of higan. And not in
a good way.
* target-higan and target-loki have been blown away completely
* nall and ruby massively updated
* phoenix replaced with hiro (pretty near a total rewrite)
* target-higan restarted using hiro (just a window for now)
* all emulation cores updated to compile again
* installation changed to not require root privileges (installs locally)
For the foreseeable future (maybe even permanently?), the new higan UI
will only build under Linux/BSD with GTK+ 2.20+. Probably the most
likely route for Windows/OS X will be to try and figure out how to build
hiro/GTK on those platforms, as awful as that would be. The other
alternative would be to produce new UIs for those platforms ... which
would actually be a good opportunity to make something much more user
friendly.
Being that I just started on this a few hours ago, that means that for
at least a few weeks, don't expect to be able to actually play any
games. Right now, you can pretty much just compile the binary and that's
it. It's quite possible that some nall changes didn't produce
compilation errors, but will produce runtime errors. So until the UI can
actually load games, we won't know if anything is broken. But we should
mostly be okay. It was mostly just trim<1> -> trim changes, moving to
Hash::SHA256 (much cleaner), and patching some reckless memory copy
functions enough to compile.
Progress isn't going to be like it was before: I'm now dividing my time
much thinner between studying and other hobbies.
My aim this time is not to produce a binary for everyone to play games
on. Rather, it's to keep the emulator alive. I want to be able to apply
critical patches again. And I would also like the base of the emulator
to live on, for use in other emulator frontends that utilize higan.