mirror of https://github.com/bsnes-emu/bsnes.git
20 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Tim Allen | bdc100e123 |
Update to v102r02 release.
byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode. |
|
Tim Allen | bf90bdfcc8 |
Update to v101r31 release.
byuu says: Changelog: - converted Emulator::Interface::Bind to Emulator::Platform - temporarily disabled SGB hooks - SMS: emulated Game Gear palette (latching word-write behavior not implemented yet) - SMS: emulated Master System 'Reset' button, Game Gear 'Start' button - SMS: removed reset() functionality, driven by the mappable input now instead - SMS: split interface class in two: one for Master System, one for Game Gear - SMS: emulated Game Gear video cropping to 160x144 - PCE: started on HuC6280 CPU core—so far only registers, NOP instruction has been implemented Errata: - Super Game Boy support is broken and thus disabled - if you switch between Master System and Game Gear without restarting, bad things happen: - SMS→GG, no video output on the GG - GG→SMS, no input on the SMS I'm not sure what's causing the SMS\<-\>GG switch bug, having a hard time debugging it. Help would be very much appreciated, if anyone's up for it. Otherwise I'll keep trying to track it down on my end. |
|
Tim Allen | ca277cd5e8 |
Update to v100r14 release.
byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP. |
|
Tim Allen | 76a8ecd32a |
Update to v100r03 release.
byuu says: Changelog: - moved Thread, Scheduler, Cheat functionality into emulator/ for all cores - start of actual Mega Drive emulation (two 68K instructions) I'm going to be rather terse on MD emulation, as it's too early for any meaningful dialogue here. |
|
Tim Allen | 3e807946b8 |
Update to v099r11 release.
byuu says: Changelog: - NES PPU core updated to use BitFields (absolutely massive improvement in code readability) - NES APU core updated to new coding style - NES cartridge/board and cartridge/chip updated to new coding style - pushed NES PPU rendering one dot forward (doesn't fix King's Quest V yet, sadly) - fixed SNES PPU BG tilemask for 128KiB VRAM mode (doesn't fix Yoshi's Island, though) So ... I kind of went overboard with the fc/cartridge changes. This WIP diff is 185KiB >_> I didn't realize it was going to be as big a task as it was, but once I started everything broke in a chain reaction, so I had to do it all at once. There's a massive chance we've broken a bunch of NES things. Any typos in this WIP are going to be absolutely insidious to track down =( But ... supposing I pulled it off, this means the Famicom core is now fully converted to the new coding style as well. That leaves only the GB and GBA cores. Once those are finished, then we'll finally be free of these gigantic hellspawn diffs. |
|
Tim Allen | f48b332c83 |
Update to v099r08 release.
byuu says: Changelog: - nall/vfs work 100% completed; even SGB games load now - emulation cores now call load() for the base cartridges as well - updated port/device handling; portmask is gone; device ID bug should be resolved now - SNES controller port 1 multitap option was removed - added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp VRAM::size=0x10000; to enable) Overall, nall/vfs was a huge success!! We've substantially reduced the amount of boilerplate code everywhere, while still allowing (even easier than before) support for RAM-based game loading/saving. All of nall/stream is dead and buried. I am considering removing Emulator::Interface::Medium::id and/or bootable flag. Or at least, doing something different with it. The values for the non-bootable GB/BS/ST entries duplicate the ID that is supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use this as the hardware revision selection ID, and then gut non-bootable options. There's really no reason for that to be there. I think at one point I was using it to generate library tabs for non-bootable systems, but we don't do that anymore anyway. Emulator::Interface::load() may not need the required flag anymore ... it doesn't really do anything right now anyway. I have a few reasons for having the cores load the base cartridge. Most importantly, it is going to enable a special mode for the WonderSwan / WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's possible to boot these systems with no games inserted to set user profile information and such. There are also other systems that may accept being booted without a cartridge. To reach this state, you would load a game and then cancel the load dialog. Right now, this results in games not loading. The second reason is this prevents nasty crashes when loading fails. So if you're missing a required manifest, the emulator won't die a violent death anymore. It's able to back out at any point. The third reason is consistency: loading the base cartridge works the same as the slot cartridges. The fourth reason is Emulator::Interface::open(uint pathID) values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This complicated things because you had to pass the correct ID. But now instead, Emulator::Interface::load() returns maybe<uint> that is nothing when no game is selected, and a pathID for a valid game. And now open() can take this ID to access this game's folder contents. The downside, which is temporary, is that command-line loading is currently broken. But I do intend on restoring it. In fact, I want to do better than before and allow multi-cart booting from the command-line by specifying the base cartridge and then slot cartridges. The idea should be pretty simple: keep a queue of pending filenames that we fill from the command-line and/or drag-and-drop operations on the main window, and then empty out the queue or prompt for load dialogs from the UI when booting a system. This also might be a bit more unorthodox compared to the traditional emulator design of "loadGame(filename)", but ... oh well. It's easy enough still. The port/device changes are fun. We simplified things quite a bit. The portmask stuff is gone entirely. While ports and devices keep IDs, this is really just sugar-coating so UIs can use for(auto& port : emulator->ports) and access port.id; rather than having to use for(auto n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... }; but they should otherwise generally be identical to the order they appear in their respective ranges. Still, don't rely on that. Input::id is gone. There was no point since we also got rid of the nasty Input::order vector. Since I was in here, I went ahead and caved on the pedantics and renamed Input::guid to Input::userData. I removed the SNES controller port 1 multitap option. Basically, the only game that uses this is N-warp Daisakusen and, no offense to d4s, it's not really a good game anyway. It's just a quick demo to show 8-players on the SNES. But in the UI, all it does is confuse people into wasting time mapping a controller they're never going to use, and they're going to wonder which port to use. If more compelling use cases for 8-players comes about, we can reconsider this. I left all the code to support this in place, so all you have to do is uncomment one line to enable it again. We now have dsnes emulation! :D If you change PPU::VRAM::size to 0x10000 (words), then you should now have 128KiB of VRAM. Even better, it serializes the used-VRAM size, so your save states shouldn't crash on you if you swap between the two (though if you try this, you're nuts.) Note that this option does break commercial software. Yoshi's Island in particular. This game is setting A15 on some PPU register writes, but not on others. The end result of this is things break horribly in-game. Also, this option is causing a very tiny speed hit for obvious reasons with the variable masking value (I'm even using size-1 for now.) Given how niche this is, I may just leave it a compile-time constant to avoid the overhead cost. Otherwise, if we keep the option, then it'll go into Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future. ---- Finally, some fun for my OCD ... my monitor suddenly cut out on me in the middle of working on this WIP, about six hours in of non-stop work. Had to hit a bunch of ctrl+alt+fN commands (among other things) and trying to log in headless on another TTY to do issue commands, trying to recover the display. Finally power cycled the monitor and it came back up. So all my typing ended up going to who knows where. Usually this sort of thing terrifies me enough that I scrap a WIP and start over to ensure I didn't screw anything up during the crashed screen when hitting keys randomly. Obviously, everything compiles and appears to work fine. And I know it's extremely paranoid, but OCD isn't logical, so ... I'm going to go over every line of the 100KiB r07->r08 diff looking for any corruption/errors/whatever. ---- Review finished. r08 diff review notes: - fc/controller/gamepad/gamepad.cpp: use uint device = ID::Device::Gamepad; not id = ...; - gb/cartridge/cartridge.hpp: remove redundant uint _pathID; (in Information::pathID already) - gb/cartridge/cartridge.hpp: pull sha256 inside Information - sfc/cartridge/load/cpp: add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more descriptive - sfc/controller/gamepad/gamepad.cpp: use uint device = ID::Device::Gamepad; not id = ...; - sfc/interface/interface.cpp: remove n variable from the Multitap device input generation loop (now unused) - sfc/interface/interface.hpp: put struct Port above struct Device like the other classes - ui-tomoko: cheats.bml is reading from/writing to mediumPaths(0) [system folder instead of game folder] - ui-tomoko: instead of mediumPaths(1) - call emulator->metadataPathID() or something like that |
|
Tim Allen | ccd8878d75 |
Update to v099r07 release.
byuu says: Changelog: - (hopefully) fixed BS Memory and Sufami Turbo slot loading - ported GB, GBA, WS cores to use nall/vfs - completely removed loadRequest, saveRequest functionality from Emulator::Interface and ui-tomoko - loadRequest(folder) is now load(folder) - save states now use a shared Emulator::SerializerVersion string - whenever this is bumped, all older states will break; but this makes bumping state versions way easier - also, the version string makes it a lot easier to identify compatibility windows for save states - SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr] NOTE: Super Game Boy loading is currently broken, and I'm not entirely sure how to fix it :/ The file loading handoff was -really- complicated, and so I'm kind of at a loss ... so for now, don't try it. Everything else should theoretically work, so please report any bugs you find. So, this is pretty much it. I'd be very curious to hear feedback from people who objected to the old nall/stream design, whether they are happy with the new file loading system or think it could use further improvements. The 16-bit VRAM turned out to be a wash on performance (roughly the same as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The main reason for this was because Yoshi's Island was breaking horribly until I changed the vramRead, vramWrite functions to take uint15 instead of uint16. I suspect the issue is we're using uint16s in some areas now that need to be uint15, and this game is setting the VRAM address to 0x8000+, causing us to go out of bounds on memory accesses. But ... I want to go ahead and do something cute for fun, and just because we can ... and this new interface is so incredibly perfect for it!! I want to support an SNES unit with 128KiB of VRAM. Not out of the box, but as a fun little tweakable thing. The SNES was clearly designed to support that, they just didn't use big enough VRAM chips, and left one of the lines disconnected. So ... let's connect it anyway! In the end, if we design it right, the only code difference should be one area where we mask by 15-bits instead of by 16-bits. |
|
Tim Allen | 875f031182 |
Update to v099r06 release.
byuu says: Changelog: - Super Famicom core converted to use nall/vfs - excludes Super Game Boy; since that's invoked from inside the GB core This was definitely the major obstacle to test nall/vfs' applicability. Things worked out pretty great in the end. We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB (cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes a very large source of indirection. Before it was: "coprocessor <=> cartridge <=> interface" for loading and saving data, and now it's just "coprocessor <=> cartridge". And it may make sense to eventually turn this into just "cartridge -> coprocessor" by making each coprocessor class handle its own markup parsing. It's nice to have all the manifest parsing in one location (well, sans MSU1); but it's also nice for loading/unloading to be handled by each coprocessor itself. So I'll have to think longer about that one. I've also started handling Interface::save() differently. Instead of keeping track of memory IDs and filenames, and iterating through that vector of objects ... instead I now have a system that mirrors the markup parsing on loading, but handles saving instead. This was actually the reason the code size savings weren't more significant, but I like this style more. As before, it removes an extra level of indirection. So ... next up, I need to port over the GB, then GBA, then WS cores. These shouldn't take too long since they're all very simple with just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then after that, gut all the old stream stuff from nall and higan. Kill the (load,save)Request stuff, rename the load(Gamepak)Request to something simpler, and then we should be good. Anyway ... these are some huge changes. |
|
Tim Allen | f04d9d58f5 |
Update to v099r05 release.
byuu says: Changelog: - added nall/vfs - converted Famicom core to use nall/vfs interface instead of nall/stream interface |
|
Tim Allen | 40abcfc4a5 |
Update to v099r04 release.
byuu says: Changelog: - lots of code cleanups to processor/r6502 (the switch.cpp file is only halfway done ...) - lots of code cleanups to fc/cpu - removed fc/input - implemented fc/controller hex_usr, you may not like this, but I want to keep the controller port and expansion port interface separate, like I do with the SNES. I realize the NES' is used more for controllers, and the SNES' more for hardware expansions, but ... they're not compatible pinouts and you can't really connect one to the other. Right now, I've only implemented the controller portion. I'll have to get to the peripheral portion later. Also, the gamepad implementation there now may be wrong. It's based off the Super Famicom version obviously. I'm not sure if the Famicom has different behavior with latching $4016 writes, or not. But, it works in Mega Man II, so it's a start. Everyone, be sure to remap your controls, and then set port 1 -> gamepad after loading your first Famicom game with the new WIP. |
|
Tim Allen | e2ee6689a0 |
Update to v098r06 release.
byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad. |
|
Tim Allen | a2d3b8ba15 |
Update to v098r04 release.
byuu says: Changelog: - SFC: fixed behavior of 21fx $21fe register when no device is connected (must return zero) - SFC: reduced 21fx buffer size to 1024 bytes in both directions to mirror the FT232H we are using - SFC: eliminated dsp/modulo-array.hpp [1] - higan: implemented higan/video interface and migrated all cores to it [2] [1] the echo history buffer was 8-bytes, so there was no need for it at all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and has very weird behavior ... but there's only a single location in the code where it actually writes to this buffer. It's much easier to just write to the buffer three times there instead of implementing an entire class just to abstract away two lines of code. This change actually boosted the speed from ~124.5fps to around ~127.5fps, but that's within the margin of error for GCC. I doubt it's actually faster this way. The DSP core could really use a ton of work. It comes from a port of blargg's spc_dsp to my coding style, but he was extremely fond of using 32-bit signed integers everywhere. There's a lot of opportunity to remove red tape masking by resizing the variables to their actual state sizes. I really need to find where I put spc_dsp6.sfc from blargg. It's a great test to verify if I've made any mistakes in my implementation that would cause regressions. Don't suppose anyone has it? [2] so again, the idea is that higan/audio and higan/video are going to sit between the emulation cores and the user interfaces. The hope is to output raw encoding data from the emulation cores without having to worry about the video display format (generally 24-bit RGB) of the host display. And also to avoid having to repeat myself with eg three separate implementations of interframe blending, and so on. Furthermore, the idea is that the user interface can configure its side of the settings, and the emulation cores can configure their sides. Thus, neither has to worry about the other end. And now we can spin off new user interfaces much easier without having to mess with all of these things. Right now, I've implemented color emulation, interframe blending and SNES horizontal color bleed. I did not implement scanlines (and interlace effects for them) yet, but I probably will at some point. Further, for right now, the WonderSwan/Color screen rotation is busted and will only show games in the horizontal orientation. Obviously this must be fixed before the next official release, but I'll want to think about how to implement it. Also, the SNES light gun pointers are missing for now. Things are a bit messy right now as I've gone through several revisions of how to handle these things, so a good house cleaning is in order once everything is feature-complete again. I need to sit down and think through how and where I want to handle things like light gun cursors, LCD icons, and maybe even rasterized text messages. And obviously ... higan/audio is still just nall::DSP's headers. I need to revamp that whole interface. I want to make it quite powerful with a true audio mixer so I can handle things like SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.) The video system has the concept of "effects" for things like color bleed and interframe blending. I want to extend on this with useful other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x filter, etc. I'd also like to restore the saturation/gamma/luma adjustment sliders ... I always liked allowing people to compensate for their displays without having to change settings system-wide. Lastly, I've always wanted to see some audio effects. Although I doubt we'll ever get my dream of CoreAudio-style profiles, I'd like to get some basic equalizer settings and echo/reverb effects in there. |
|
Tim Allen | 6c83329cae |
Update to v097r13 release.
byuu says: I refactored my schedulers. Added about ten lines to each scheduler, and removed about 100 lines of calling into internal state in the scheduler for the FC,SFC cores and about 30-40 lines for the other cores. All of its state is now private. Also reworked all of the entry points to static auto Enter() and auto main(). Where Enter() handles all the synchronization stuff, and main() doesn't need the while(true); loop forcing another layer of indentation everywhere. Took a few hours to do, but totally worth it. I'm surprised I didn't do this sooner. Also updated icarus gmake install rule to copy over the database. |
|
Tim Allen | 32a95a9761 |
Update to v097r12 release.
byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now. |
|
Tim Allen | cec33c1d0f |
Update to v096r07 release.
byuu says: Changelog: - configuration files are now stored in localpath() instead of configpath() - Video gamma/saturation/luminance sliders are gone now, sorry - added Video Filter->Blur Emulation [1] - added Video Filter->Scanline Emulation [2] - improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn] [1] For the Famicom, this does nothing. For the Super Famicom, this performs horizontal blending for proper pseudo-hires translucency. For the Game Boy, Game Boy Color, and Game Boy Advance, this performs interframe blending (each frame is the average of the current and previous frame), which is important for things like the GBVideoPlayer. [2] Right now, this only applies to the Super Famicom, but it'll come to the Famicom in the future. For the Super Famicom, this option doesn't just add scanlines, it simulates the phosphor decay that's visible in interlace mode. If you observe an interlaced game like RPM Racing on a real SNES, you'll notice that even on perfectly still screens, the image appears to shake. This option emulates that effect. Note 1: the buffering right now is a little sub-optimal, so there will be a slight speed hit with this new support. Since the core is now generating native ARGB8888 colors, it might as well call out to the interface to lock/unlock/refresh the video, that way it can render directly to the screen. Although ... that might not be such a hot idea, since the GBx interframe blending reads from the target buffer, and that tends to be a catastrophic option for performance. Note 2: the balanced and performance profiles for the SNES are completely busted again. This WIP took 6 1/2 hours, and I'm exhausted. Very much not looking forward to working on those, since those two have all kinds of fucked up speedup tricks for non-interlaced and/or non-hires video modes. Note 3: if you're on Windows and you saved your system folders somewhere else, now'd be a good time to move them to %localappdata%/higan |
|
Tim Allen | 47d4bd4d81 |
Update to v096r01 release.
byuu says: Changelog: - restructured the project and removed a whole bunch of old/dead directives from higan/GNUmakefile - huge amounts of work on hiro/cocoa (compiles but ~70% of the functionality is commented out) - fixed a masking error in my ARM CPU disassembler [Lioncash] - SFC: decided to change board cic=(411,413) back to board region=(ntsc,pal) ... the former was too obtuse If you rename Boolean (it's a problem with an include from ruby, not from hiro) and disable all the ruby drivers, you can compile an OS X binary, but obviously it's not going to do anything. It's a boring WIP, I just wanted to push out the project structure change now at the start of this WIP cycle. |
|
Tim Allen | 4e2eb23835 |
Update to v093 release.
byuu says: Changelog: - added Cocoa target: higan can now be compiled for OS X Lion [Cydrak, byuu] - SNES/accuracy profile hires color blending improvements - fixes Marvelous text [AWJ] - fixed a slight bug in SNES/SA-1 VBR support caused by a typo - added support for multi-pass shaders that can load external textures (requires OpenGL 3.2+) - added game library path (used by ananke->Import Game) to Settings->Advanced - system profiles, shaders and cheats database can be stored in "all users" shared folders now (eg /usr/share on Linux) - all configuration files are in BML format now, instead of XML (much easier to read and edit this way) - main window supports drag-and-drop of game folders (but not game files / ZIP archives) - audio buffer clears when entering a modal loop on Windows (prevents audio repetition with DirectSound driver) - a substantial amount of code clean-up (probably the biggest refactoring to date) One highly desired target for this release was to default to the optimal drivers instead of the safest drivers, but because AMD drivers don't seem to like my OpenGL 3.2 driver, I've decided to postpone that. AMD has too big a market share. Hopefully with v093 officially released, we can get some public input on what AMD doesn't like. |
|
Tim Allen | 29ea5bd599 |
Update to v092r09 release.
byuu says: This will be another massive diff from the previous version. All of higan was updated to use the new foo& bar syntax, and I also updated switch statements to be consistent as well (but not in the disassemblers, was starting to get an RSI just from what I already did.) phoenix/{windows, cocoa, qt} need to be updated to use "string foo" instead of "const string& foo", and after that, the major diffs should be finished. This archive is the first time I'm posting my copy-on-write, size+capacity nall::string class, so any feedback on that is welcome as well. |
|
Tim Allen | 032e924495 |
Update to v092 release.
In the release thread, byuu says: The first official release of higan has been posted. higan is the new name for bsnes, and it continues with the latter's version numbering. Note that as of now, bsnes still exists. It's a module distributed inside of higan. bsnes is now specific to my SNES emulator. Due to last minute changes to the emulator interface, and missing support in ananke, I wasn't able to include Cydrak's Nintendo DS emulator dasShiny in this build, but I hope to do so in the next release. http://code.google.com/p/higan/downloads/list For both new and experienced users, please read the higan user guide first: http://byuu.org/higan/user-guide In the v091 WIP thread, byuu says: r15->r16: - BS-X MaskROM handling (partial ... need to split bsx/flash away from sfc/chip, restructure code - it requires tagging the base cart markup for now, but it needs to parse the slotted cart markup) - phoenixflags / phoenixlink += -m32 - nall/sort stability - if(input.poll(scancode[activeScancode]) == false) return; - MSU1 / USART need to use interface->path(1) - MSU1 needs to use Markup::Document, not XML::Document - case-insensitive folder listings - remove nall/emulation/system.hpp files (move to ananke) - remove rom/ram id= checks with indexing X have cores ask for manifest.bml (skipped for v092's release, too big a change) - rename compatibility profile to balanced (so people don't assume it has better compatibility than accuracy) |
|
Tim Allen | 94b2538af5 |
Update to higan v091 release.
byuu says: Basically just a project rename, with s/bsnes/higan and the new icon from lowkee added in. It won't compile on Windows because I forgot to update the resource.rc file, and a path transform command isn't working on Windows. It was really just meant as a starting point, so that v091 WIPs can flow starting from .00 with the new name (it overshadows bsnes v091, so publicly speaking this "shouldn't exist" and will probably be deleted from Google Code when v092 is ready.) |