mirror of https://github.com/bsnes-emu/bsnes.git
13 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Tim Allen | e9d2d56df9 |
Update to v105r1 release.
byuu says: Changelog: - higan: readded support for soft-reset to Famicom, Super Famicom, Mega Drive cores (work in progress) - handhelds lack soft reset obviously - the PC Engine also lacks a physical reset button - the Master System's reset button acts like a gamepad button, so can't show up in the menu - Mega Drive: power cycle wasn't initializing CPU (M68K) or APU (Z80) RAM - Super Famicom: fix SPC700 opcode 0x3b regression; fixes Majuu Ou [Jonas Quinn] - Super Famicom: fix SharpRTC save regression; fixes Dai Kaijuu Monogatari II's real-time clock [Talarubi] - Super Famicom: fix EpsonRTC save regression; fixes Tengai Makyou Zero's real-time clock [Talarubi] - Super Famicom: removed `*::init()` functions, as they were never used - Super Famicom: removed all but two `*::load()` functions, as they were not used - higan: added option to auto-save backup RAM every five seconds (enabled by default) - this is in case the emulator crashes, or there's a power outage; turn it off under advanced settings if you want - libco: updated license from public domain to ISC, for consistency with nall, ruby, hiro - nall: Linux compiler defaults to g++; override with g++-version if g++ is <= 4.8 - FreeBSD compiler default is going to remain g++49 until my dev box OS ships with g++ >= 4.9 Errata: I have weird RAM initialization constants, thanks to hex_usr and onethirdxcubed for both finding this: http://wiki.nesdev.com/w/index.php?title=CPU_power_up_state&diff=11711&oldid=11184 I'll remove this in the next WIP. |
|
Tim Allen | b7006822bf |
Update to v103 WIP release.
byuu says (in the WIP forum): Changelog: - higan: cheat codes accept = and ? separators now - the new preferred code format is: address=value or address=if-match?value - the old code format of address/value and address/if-match/value will continue to work - higan: cheats.bml is no longer included with the base distribution - mightymo stopped updating it in 2015, and it's not source code; it can still be pulled in from older releases - fc: improved PAL mode timing; use PAL APU timing tables; fix PAL noise period table [hex\_usr] - md: support aborting a Z80 bus wait in order to capture save states without freezing - note that this will violate accuracy; but in practice a slight desync is better than an emulator deadlock - sfc: revert DSP ENDX randomization for now (want to research it more before deploying in an official release) - sfc: fix Super Famicom.sys/manifest.bml APU RAM size [hex\_usr] - tomoko: cleaned up make install rules - hiro/cocoa: use ABGR for pixel data [Sintendo] Note: I forgot to change the command-line and drag-and-drop separator from : to | in this WIP. However, it is corrected in the v103 official binary and source published on download.byuu.org. Sorry about that, I know it makes the Git repository history more difficult. I'm not concerned whether the : → | change is part of v103 or v103r01 in the repository, and will leave this to your discretion, Screwtape. I also still need to set the VDP bit to indicate PAL mode in the Mega Drive core. This is what happens when I have 47 things I have to do, given how lousy my memory is. I miss things. |
|
Tim Allen | 6e8406291c |
Update to v102r24 release.
byuu says Changelog: - FC: fixed three MOS6502 regressions [hex\_usr] - GBA: return fetched instruction instead of 0 for unmapped MMIO (passes all of endrift's I/O tests) - MD: fix VDP control port read Vblank bit to test screen height instead of hard-code 240 (fixes Phantasy Star IV) - MD: swap USP,SSP when executing an exception (allows Super Street Fighter II to run; but no sprites visible yet) - MD: grant 68K access to Z80 bus on reset (fixes vdpdoc demo ROM from freezing immediately) - SFC: reads from $00-3f,80-bf:4000-43ff no longer update MDR [p4plus2] - SFC: massive, eight-hour cleanup of WDC65816 CPU core ... still not complete The big change this time around is the SFC CPU core. I've renamed everything from R65816 to WDC65816, and then went through and tried to clean up the code as much as possible. This core is so much larger than the 6502 core that I chose cleaning up the code to rewriting it. First off, I really don't care for the BitRange style functionality. It was an interesting experiment, but its fatal flaw are that the types are just bizarre, which makes them hard to pass around generically to other functions as arguments. So I went back to the list of bools for flags, and union/struct blocks for the registers. Next, I renamed all of the functions to be more descriptive: eg `op_read_idpx_w` becomes `instructionIndexedIndirectRead16`. `op_adc_b` becomes `algorithmADC8`. And so forth. I eliminated about ten instructions because they were functionally identical sans the index, so I just added a uint index=0 parameter to said functions. I added a few new ones (adjust→INC,DEC; pflag→REP,SEP) where it seemed appropriate. I cleaned up the disaster of the instruction switch table into something a whole lot more elegant without all the weird argument decoding nonsense (still need M vs X variants to avoid having to have 4-5 separate switch tables, but all the F/I flags are gone now); and made some things saner, like the flag clear/set and branch conditions, now that I have normal types for flags and registers once again. I renamed all of the memory access functions to be more descriptive to what they're doing: eg writeSP→push, readPC→fetch, writeDP→writeDirect, etc. Eliminated some of the special read/write modes that were only used in one single instruction. I started to clean up some of the actual instructions themselves, but haven't really accomplished much here. The big thing I want to do is get rid of the global state (aa, rd, iaddr, etc) and instead use local variables like I am doing with my other 65xx CPU cores now. But this will take some time ... the algorithm functions depend on rd to be set to work on them, rather than taking arguments. So I'll need to rework that. And then lastly, the disassembler is still a mess. I want to finish the CPU cleanups, and then post a new WIP, and then rewrite the disassembler after that. The reason being ... I want a WIP that can generate identical trace logs to older versions, in case the CPU cleanup causes any regressions. That way I can more easily spot the errors. Oh ... and a bit of good news. v102 was running at ~140fps on the SNES core. With the new support to suspend/resume WAI/STP, plus the internal CPU registers not updating the MDR, the framerate dropped to ~132fps. But with the CPU cleanups, performance went back to ~140fps. So, hooray. Of course, without those two other improvements, we'd have ended up at possibly ~146-148fps, but oh well. |
|
Tim Allen | cea64b9991 |
Update to v102r23 release.
byuu says: Changelog: - rewrote the 6502 CPU core from scratch. Now called MOS6502, supported BCD mode - Famicom core disables BCD mode via MOS6502::BCD = 0; - renamed r65816 folder to wdc65816 (still need to rename the actual class, though ...) Note: need to remove build rules for the now renamed r6502, r65816 objects from processor/GNUmakefile. So this'll seem like a small WIP, but it was a solid five hours to rewrite the entire 6502 core. The reason I wanted to do this was because the old 6502 core was pretty sloppy. My coding style improved a lot, and I really liked how the HuC6280 CPU core came out, so I wanted the 6502 core to be like that one. The core can now support BCD mode, so hopefully that will prove useful to hex\_usr and allow one core to run both the NES and his Atari 2600 cores at some point. Note that right now, the core doesn't support any illegal instructions. The old core supported a small number of them, but were mostly the no operation ones. The goal is support all of the illegal instructions at some point. It's very possible the rewrite introduced some regressions, so thorough testing of the NES core would be appreciated if anyone were up for it. |
|
Tim Allen | bdc100e123 |
Update to v102r02 release.
byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode. |
|
Tim Allen | ca277cd5e8 |
Update to v100r14 release.
byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP. |
|
Tim Allen | 76a8ecd32a |
Update to v100r03 release.
byuu says: Changelog: - moved Thread, Scheduler, Cheat functionality into emulator/ for all cores - start of actual Mega Drive emulation (two 68K instructions) I'm going to be rather terse on MD emulation, as it's too early for any meaningful dialogue here. |
|
Tim Allen | 40abcfc4a5 |
Update to v099r04 release.
byuu says: Changelog: - lots of code cleanups to processor/r6502 (the switch.cpp file is only halfway done ...) - lots of code cleanups to fc/cpu - removed fc/input - implemented fc/controller hex_usr, you may not like this, but I want to keep the controller port and expansion port interface separate, like I do with the SNES. I realize the NES' is used more for controllers, and the SNES' more for hardware expansions, but ... they're not compatible pinouts and you can't really connect one to the other. Right now, I've only implemented the controller portion. I'll have to get to the peripheral portion later. Also, the gamepad implementation there now may be wrong. It's based off the Super Famicom version obviously. I'm not sure if the Famicom has different behavior with latching $4016 writes, or not. But, it works in Mega Man II, so it's a start. Everyone, be sure to remap your controls, and then set port 1 -> gamepad after loading your first Famicom game with the new WIP. |
|
Tim Allen | 6c83329cae |
Update to v097r13 release.
byuu says: I refactored my schedulers. Added about ten lines to each scheduler, and removed about 100 lines of calling into internal state in the scheduler for the FC,SFC cores and about 30-40 lines for the other cores. All of its state is now private. Also reworked all of the entry points to static auto Enter() and auto main(). Where Enter() handles all the synchronization stuff, and main() doesn't need the while(true); loop forcing another layer of indentation everywhere. Took a few hours to do, but totally worth it. I'm surprised I didn't do this sooner. Also updated icarus gmake install rule to copy over the database. |
|
Tim Allen | 47d4bd4d81 |
Update to v096r01 release.
byuu says: Changelog: - restructured the project and removed a whole bunch of old/dead directives from higan/GNUmakefile - huge amounts of work on hiro/cocoa (compiles but ~70% of the functionality is commented out) - fixed a masking error in my ARM CPU disassembler [Lioncash] - SFC: decided to change board cic=(411,413) back to board region=(ntsc,pal) ... the former was too obtuse If you rename Boolean (it's a problem with an include from ruby, not from hiro) and disable all the ruby drivers, you can compile an OS X binary, but obviously it's not going to do anything. It's a boring WIP, I just wanted to push out the project structure change now at the start of this WIP cycle. |
|
Tim Allen | 4e2eb23835 |
Update to v093 release.
byuu says: Changelog: - added Cocoa target: higan can now be compiled for OS X Lion [Cydrak, byuu] - SNES/accuracy profile hires color blending improvements - fixes Marvelous text [AWJ] - fixed a slight bug in SNES/SA-1 VBR support caused by a typo - added support for multi-pass shaders that can load external textures (requires OpenGL 3.2+) - added game library path (used by ananke->Import Game) to Settings->Advanced - system profiles, shaders and cheats database can be stored in "all users" shared folders now (eg /usr/share on Linux) - all configuration files are in BML format now, instead of XML (much easier to read and edit this way) - main window supports drag-and-drop of game folders (but not game files / ZIP archives) - audio buffer clears when entering a modal loop on Windows (prevents audio repetition with DirectSound driver) - a substantial amount of code clean-up (probably the biggest refactoring to date) One highly desired target for this release was to default to the optimal drivers instead of the safest drivers, but because AMD drivers don't seem to like my OpenGL 3.2 driver, I've decided to postpone that. AMD has too big a market share. Hopefully with v093 officially released, we can get some public input on what AMD doesn't like. |
|
Tim Allen | 29ea5bd599 |
Update to v092r09 release.
byuu says: This will be another massive diff from the previous version. All of higan was updated to use the new foo& bar syntax, and I also updated switch statements to be consistent as well (but not in the disassemblers, was starting to get an RSI just from what I already did.) phoenix/{windows, cocoa, qt} need to be updated to use "string foo" instead of "const string& foo", and after that, the major diffs should be finished. This archive is the first time I'm posting my copy-on-write, size+capacity nall::string class, so any feedback on that is welcome as well. |
|
Tim Allen | 94b2538af5 |
Update to higan v091 release.
byuu says: Basically just a project rename, with s/bsnes/higan and the new icon from lowkee added in. It won't compile on Windows because I forgot to update the resource.rc file, and a path transform command isn't working on Windows. It was really just meant as a starting point, so that v091 WIPs can flow starting from .00 with the new name (it overshadows bsnes v091, so publicly speaking this "shouldn't exist" and will probably be deleted from Google Code when v092 is ready.) |