mirror of https://github.com/bsnes-emu/bsnes.git
9 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Tim Allen | 11357169a5 |
Update to v104r02 release.
byuu says: Changelog: - md/vdp: backgrounds always update priority bit output [Cydrak] - md/vdp: vcounter.d0 becomes vcounter.d8 in interlace mode 3 - md/vdp: return field number in interlace modes from status register - md/vdp: rework scanline/frame counting in main loop so first frame won't clock to field 1 instead of field 0 - md/vdp: add support for shadow/highlight mode; optimize to minimal code [Cydrak] - md/vdp: update outputPixel() to support interlace modes - sfc/cpu: auto joypad polling start should clear the shift registers; fixes Nuke (PD) - thanks to BMF54123 for this bug report - tomoko: if an invalid video/audio/input driver is found in the configuration file, it's reset to "None" - prevents showing the wrong driver under advanced settings; no longer requires possibly two reboots to fix Note: the Mega Drive interlace mode 1 should be working fully, but I don't know any games that use it. Interlace mode 3 (Sonic 2's two-player mode) does not work at all yet, but this is a good start. |
|
Tim Allen | ff3750de4f |
Update to v103r04 release.
byuu says: Changelog: - fc/apu: $4003,$4007 writes initialize duty counter to 0 instead of 7 - fc/apu: corrected duty table entries for use with decrementing duty counter - processor/spc700: emulated the behavior of cycle 3 of (x)+ instructions to not read I/O registers - specifically, this prevents reads from $fd-ff from resetting the timers, as observed on real hardware - sfc/controller: added ControllerPort class to match Mega Drive design - sfc/expansion: added ExpansionPort class to match Mega Drive design - sfc/system: removed Peripherals class - sfc/system: changed `colorburst()` to `cpuFrequency()`; added `apuFrequency()` - sfc: replaced calls to `system.region == System::Region::*` with `Region::*()` - sfc/expansion: remove thread from scheduler when device is destroyed - sfc/smp: `{read,write}Port` now use a separate 4x8-bit buffer instead of underlying APU RAM [hex\_usr] |
|
Tim Allen | a4629e1f64 |
Update to v102r21 release.
byuu says: Changelog: - GBA: fixed WININ2 reads, BG3PB writes [Jonas Quinn] - R65816: added support for yielding/resuming from WAI/STP¹ - SFC: removed status.dmaCounter functionality (also fixes possible TAS desync issue) - tomoko: added support for combinatorial inputs [hex\_usr\]² - nall: fixed missing return value from Arithmetic::operator-- [Hendricks266] Now would be the time to start looking for major regressions with the new GBA PPU renderer, I suppose ... ¹: this doesn't matter for the master thread (SNES CPU), but is important for slave threads (SNES SA1). If you try to save a state and the SA1 is inside of a WAI instruction, it will get stuck there forever. This was causing attempts to create a save state in Super Bomberman - Panic Bomber W to deadlock the emulator and crash it. This is now finally fixed. Note that I still need to implement similar functionality into the Mega Drive 68K and Z80 cores. They still have the possibility of deadlocking. The SNES implementation was more a dry-run test for this new functionality. This possible crashing bug in the Mega Drive core is the major blocking bug for a new official release. ²: many, many thanks to hex\_usr for coming up with a really nice design. I mostly implemented it the exact same way, but with a few tiny differences that don't really matter (display " and ", " or " instead of " & ", " | " in the input settings windows; append → bind; assignmentName changed to displayName.) The actual functionality is identical to the old higan v094 and earlier builds. Emulated digital inputs let you combine multiple possible keys to trigger the buttons. This is OR logic, so you can map to eg keyboard.up OR gamepad.up for instance. Emulated analog inputs always sum together. Emulated rumble outputs will cause all mapped devices to rumble, which is probably not at all useful but whatever. Hotkeys use AND logic, so you have to press every key mapped to trigger them. Useful for eg Ctrl+F to trigger fullscreen. Obviously, there are cases where OR logic would be nice for hotkeys, too. Eg if you want both F11 and your gamepad's guide button to trigger the fullscreen toggle. Unfortunately, this isn't supported, and likely won't ever be in tomoko. Something I might consider is a throw switch in the configuration file to swap between AND or OR logic for hotkeys, but I'm not going to allow construction of mappings like "(Keyboard.Ctrl and Keyboard.F) or Gamepad.Guide", as that's just too complicated to code, and too complicated to make a nice GUI to set up the mappings for. |
|
Tim Allen | 3bcf3c24c9 |
Update to v102r20 release.
byuu says: Changelog: - nall: `#undef OUT` on Windows platform - GBA: add missing CPU prefetch state to serialization (this was breaking serialization in games using ROM prefetch) - GBA: reset all PPU data in the power() function (some things were missing before, causing issues on reset) - GBA: restored horizontal mosaic emulation to the new pixel-based renderer - GBA: fixed tilemap background horizontal flipping (Legend of Spyro - warning screen) - GBA: fixed d8 bits of scroll registers (ATV - Thunder Ridge Racers - menu screen) - SFC: DRAM refresh ticks the ALU MUL/DIV registers five steps forward [reported by kevtris] - SFC: merged dmaCounter and autoJoypadCounter into new shared clockCounter - left stub for old dmaCounter so that I can do some traces to ensure the new code's 100% identical GBA save states would have been broken since whenever I emulated ROM prefetch. I guess not many people are using the GBA core ... |
|
Tim Allen | ca277cd5e8 |
Update to v100r14 release.
byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP. |
|
Tim Allen | 82293c95ae |
Update to v099r14 release.
byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes. |
|
Tim Allen | 44a8c5a2b4 |
Update to v099r03 release.
byuu says: Changelog: - finished cleaning up the SFC core to my new coding conventions - removed sfc/controller/usart (superseded by 21fx) - hid Synchronize Video option from the menu (still in the configuration file) Pretty much the only minor detail left is some variable names in the SA-1 core that really won't look good at all if I move to camelCase, so I'll have to rethink how I handle those. It's probably a good area to attempt using BitFields, to see how it impacts performance. But I'll do that in a test branch first. But for the most part, this should be the end of the gigantic diffs (this one was 174KiB), at least for the SFC/WS cores. Still have the FC/GB/GBA cores to clean up more fully. Assuming we don't spot any new regressions, we should be ~95% out of the woods on code cleanups breaking things. |
|
Tim Allen | 7403e69307 |
Update to v098r02 release.
byuu says: Changelog: - SFC: fixed a regression on auto joypad polling due to missing parentheses - SFC: exported new PPU::vdisp() const -> uint; function [1] - SFC: merged PPU MMIO functions into the read/write handles (as I previously did for the CPU) - higan: removed individual emulator core names (bnes, bsnes, bgb, bgba, bws) [2] Forgot: - to remove /tomoko from the about dialog [1] note that technically I was relying on the cached, per-frame overscan setting when the CPU and light guns were polling the number of active display scanlines per frame. This was technically incorrect as you can change this value mid-frame and it'll kick in. I've never seen any game toggle overscan every frame, we only know about this because anomie tested this a long time ago. So, nothing should break, but ... you know how the SNES is. You can't even look at the code without something breaking, so I figured I'd mention it >_> [2] I'll probably keep referring to the SNES core as bsnes anyway. I don't mind if you guys use the b<system> names as shorthand. The simplification is mostly to make the branding easier. |
|
Tim Allen | 680d16561e |
Update to v097r29 release.
byuu says: Changelog: - fixed DAS instruction (Judgment Silversword score) - fixed [VH]TMR_FREQ writes (Judgement Silversword audio after area 20) - fixed initialization of SP (fixes seven games that were hanging on startup) - added SER_STATUS and SER_DATA stubs (fixes four games that were hanging on startup) - initialized IEEP data (fixes Super Robot Taisen Compact 2 series) - note: you'll need to delete your internal.com in WonderSwan (Color).sys folders - fixed CMPS and SCAS termination condition (fixes serious bugs in four games) - set read/writeCompleted flags for EEPROM status (fixes Tetsujin 28 Gou) - major code cleanups to SFC/R65816 and SFC/CPU - mostly refactored disassembler to output strings instead of using char* buffer - unrolled all the subfolders on sfc/cpu to a single directory - corrected casing for all of sfc/cpu and a large portion of processor/r65816 I kind of went overboard on the code cleanup with this WIP. Hopefully nothing broke. Any testing one can do with the SFC accuracy core would be greatly appreciated. There's still an absolutely huge amount of work left to go, but I do want to eventually refresh the entire codebase to my current coding style, which is extremely different from stuff that's been in higan mostly untouched since ~2006 or so. It's dangerous and fickle work, but if I don't do it, then the code will be a jumbled mess of several different styles. |