mirror of https://github.com/bsnes-emu/bsnes.git
44 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Tim Allen | 876b4be1d2 |
Update to 20180726 release.
byuu says: Once again, I wasn't able to complete a full WIP revision. This WIP-WIP adds very sophisticated emulation of the Sega Genesis Lock-On and Game Genie cartridges ... essentially, through recursion and a linked list, higan supports an infinite nesting of cartridges. Of course, on real hardware, after you stack more than three or four cartridges, the power draw gets too high and things start glitching out more and more as you keep stacking. I've heard that someone chained up to ten Sonic & Knuckles cartridges before it finally became completely unplayable. And so of course, higan emulates this limitation as well ^-^. On the fourth cartridge and beyond, it will become more and more likely that address and/or data lines "glitch" out randomly, causing various glitches. It's a completely silly easter egg that requires no speed impact whatsoever beyond the impact of the new linked list cartridge system. I also designed the successor to Emulator::Interface::cap,get,set. Those were holdovers from the older, since-removed ruby-style accessors. In its place is the new Emulator::Interface::configuration,configure API. There's the usual per-property access, and there's also access to read and write all configurable options at once. In essence, this enables introspection into core-specific features. So far, you can control processor version#s, PPU VRAM size, video settings, and hacks. As such, the .sys/manifest.bml files are no longer necessary. Instead, it all goes into .sys/configuration.bml, which is generated by the emulator if it's missing. higan is going to take this even further and allow each option under "Systems" to have its own editable configuration file. So if you wanted, you could have a 1/1/1 SNES menu option, and a 2/1/3 SNES menu option. Or a Model 1 Genesis option, and a Model 2 Genesis option. Or the various Game Boy model revisions. Or an "SNES-Fast" and "SNES-Accurate" option. I've not fully settled on the syntax of the new configuration API. I feel it might be useful to provide type information, but I really quite passionately hate any<T> container objects. For now it's all string-based, because strings can hold anything in nall. I might also change the access rules. Right now it's like: emulator→configure("video/blurEmulation", true); but it might be nicer as "Video::Blur Emulation", or "Video.BlurEmulation", or something like that. |
|
Tim Allen | 35ff15f83e |
Update to v106r50 release.
byuu says: Changelog: - emulator/video,audio: various cleanups - emulator/audio: removed reverb effect (it breaks very badly on high-frequency systems) - emulator/audio: the Nyquist anti-aliasing lowpass filter is now generated automatically instead of set per-core - at 44.1KHz output, it's set to 22KHz; at 48KHz, it's set to 22KHz; at 96KHz, it's set to 25KHz - this filter now takes the bsnes emulation speed setting into account - all system/video.cpp files removed; inlined in System::power() and Interface::set() instead - sfc/cpu: pre-compute `HTIME` as `HTIME+1<<2` for faster comparisons of HIRQs - sfc/cpu: re-add check to block IRQs on the last dot of each frame (minor speed hit) - hiro/gtk3: fixed headers for Linux compilation finally - hiro/gtk,qt: fixed settings.cpp logic so initial values are used when no settings.bml file exists - hiro/gtk: started a minor experiment to specify theming information in settings.bml files - nall/dsp: allow the precision type (double) to be overridden (to float) - nall: add some helpers for generating pre-compiled headers - it was a failure to try using them for higan, however ... - nall: add some helpers for reading fallback values from empty `Markup::Node[search]` statements Todo: - CRITICAL: a lot of my IRQ/NMI/HDMA timing tests are failing with the fast PPU ... need to figure out why - space between Emulator::video functions and Emulator::audio functions in gb/system/system.cpp - remove Audio/Reverb/Enable from settings.bml in target-bsnes |
|
Tim Allen | 5a8c814e25 |
Update to v106r40 release.
byuu says: Changelog: - hiro: added BrowserDialog::openObject() [match file *or* folder by filters] - hiro: BrowserDialog accept button is now disabled when it would otherwise do nothing - eg openFile without a folder to enter or file to open selected - eg saveFile without a file name or with a file name that matches a folder name - bsnes: added support for gamepaks (game folders) - bsnes: store all save states inside per-game .bsz (ZIP) archives instead of .bst/ folders - this reduces the number of state files from 10+ to 1; without having folders sort before files - hiro: both gtk2 and gtk3 now use cairo to render Canvas; supports sx,sy [BearOso] - higan, bsnes: fast PPU/DSP are now run-time options instead of compile-time options - bsnes: disable fast PPU when loading Air Strike Patrol / Desert Fighter - bsnes: disable fast DSP when loading Koushien 2 - bsnes: added options to advanced panel to disable fast PPU and/or fast DSP |
|
Tim Allen | 77ac5f9e88 |
Update to v106r35 release.
byuu says: Changelog: - sfc/ppu-fast: fixed overscan crash - sfc/ppu-fast: fixed direct color mode - sfc: reconnected MSU1 support - higan: game.sfc/msu1/data.rom, game.sfc/msu1/track-#.pcm - bsnes: game.msu, game-#.pcm - bsnes: added cheat code editor - bsnes: added cheat code database support - sfc/ppu-fast: clear overscan lines when overscan disabled - sfc: output 223/239 lines instead of 224/240 lines - bsnes: fix aspect correction calculation - bsnes: crop line 224 when overscan masking is enabled - bsnes: exposed Expansion Port menu; but hid “21fx” from the list of devices - bsnes: tools menu is hidden until a game is loaded - ruby/input/keyboard/quartz: fixed compilation error So only bsnes the automated overscan cropping option. In higan, you can crop however many lines you like from the top or bottom of the image. But for bsnes, it automatically eats sixteen lines. My view right now is that if bsnes is meant to be the casual gaming emulator, that it should eat line 224 in this mode. Most games show content here, but because of the way the SNES PPU works, the very last line ends up on its very own tile row (line 0 isn't rendered), if the scroll registers don't account for it. There's a small number of games that will draw junk data to the very last scanline of the frame as a result of this. So I chose, at least for now, to hide it. Users can obviously disable overscan cropping to see this scanline. I'm open to being convinced not to do this, if someone has a compelling reason. We're pretty much screwed one way or the other with no overscan masking. If we output 239 lines, then most games will render 7 blank lines + 224 drawn lines + 8 blank lines, and the black top and bottom aren't centered. But if we output 240 lines to get 8 + 224 + 8, then games that do use overscan will have a blank line at the very bottom of the window. I'm also trying out a modified cheat code file format. It's been forever since I bothered to look at it, and the “cartridge” parent node doesn't match what I'm doing with trying to rename “cartridge” to “game” in manifests. And indeed, the idea of requiring a root node is rather superfluous for a cheat code file. Current format looks like this: cheat description: foo code: 7e2000=20+7e2001=30?40 enabled cheat description: bar code: 7e4000=80 Open to discussing this, and I'd like to sync up with Snes9X before they push out a new release, and I'll agree to finalize and never change this format again. I chose to use .cht for the extension when using game files (eg gamename.cht) |
|
Tim Allen | 210306e661 |
Update to v106r20 release.
byuu says: Changelog: - Super Famicom: fixed loading of BS Memory and Sufami Turbo cartridges - Super Famicom: renamed NSS to DIP; as that's really all it is, it's not true NSS emulation - Super Famicom: slot loading now happens inside of board parsing instead of generically in loadCartridge() - Super Famicom: BS-X cartridges with flash memory now serialize their data and write it out to disk¹ - icarus: fixed Famicom game importing (hopefully) and set file import title to “Load ROM File” ¹: there's no emulation of write commands yet, so the data is never going to change anyway. This is just in preparation for more advanced emulation of BS Memory cartridges. |
|
Tim Allen | 5c55cc2c94 |
Update to v106r08 release.
byuu says: Changelog: - Game Boy: fixed RAM/RTC saving¹ - Super Famicom: ICD2 renamed to ICD (there exists an SGB prototype with a functionally identical ICD1) - Sufami Turbo: removed short-circuiting when loading an unlinkable cartridge into slot A² - Super Game Boy: the 20971520hz clock of the SGB2 is now emulated - Super Famicom: BSC-1Lxx (SA1) boards now prompt for BS memory cartridges; and can make use of them³ - Super Famicom: fixed a potential for out-of-bounds reads with BS Memory flash carts ¹: I'm using a gross hack of replacing `type: ` with `type:` so that `memory(type=...)` will match without the extra spaces. I need to think about whether I want the BPath query syntax to strip whitespace or not. But longer term, I want to finalize game/memory's design, and build a higan/emulation/manifest parser that produces a nicer interface to reading manifests for all cores, which will make this irrelevant for higan anyway. ²: I don't think it's appropriate for higan to enforce this. Nothing stops you from inserting games that can't be linked into a real Sufami Turbo. I do short-circuit if you cancel the first load, but I may allow loading an empty slot A with a populated slot B. I think the BIOS does something when you do that. Probably just yells at you. ³: I know it's emulated correctly now, but I still don't know what the heck changes when you load the SD Gundam G Next - Unit & Map Collection BS Memory cartridge with SD Gundam G Next to actually test it. |
|
Tim Allen | 3d8be92550 |
Update to v106r3 release.
byuu says: Changelog: - Super Famicom: update to newer board markup syntax - Super Famicom: update all mapped ROMs to be write-protected - errata: SPC7110 set ram.writeProtect(true), I'll fix it in the next WIP - icarus: rewrote the Super Famicom heuristics module from scratch Instead of icarus heuristics generating higan-specific mappings, it now generates generic board IDs that can be used by any emulator. I had originally planned to print out real PCB ID codes here, but these board mappings are meant to be more generic, and I don't want them to look real. The pseudo-codes are easy to parse, for example: `DSP-LOROM-NVRAM` for Super Mario Kart, `SUPERFX-RAM` for Doom. I'm going to make a `Boards (Generic).bml` file that will contain mapping definitions for every board. Until this is done, any games not in the SNES preservation database will fail to play because the mapping information is now missing. |
|
Tim Allen | e9d2d56df9 |
Update to v105r1 release.
byuu says: Changelog: - higan: readded support for soft-reset to Famicom, Super Famicom, Mega Drive cores (work in progress) - handhelds lack soft reset obviously - the PC Engine also lacks a physical reset button - the Master System's reset button acts like a gamepad button, so can't show up in the menu - Mega Drive: power cycle wasn't initializing CPU (M68K) or APU (Z80) RAM - Super Famicom: fix SPC700 opcode 0x3b regression; fixes Majuu Ou [Jonas Quinn] - Super Famicom: fix SharpRTC save regression; fixes Dai Kaijuu Monogatari II's real-time clock [Talarubi] - Super Famicom: fix EpsonRTC save regression; fixes Tengai Makyou Zero's real-time clock [Talarubi] - Super Famicom: removed `*::init()` functions, as they were never used - Super Famicom: removed all but two `*::load()` functions, as they were not used - higan: added option to auto-save backup RAM every five seconds (enabled by default) - this is in case the emulator crashes, or there's a power outage; turn it off under advanced settings if you want - libco: updated license from public domain to ISC, for consistency with nall, ruby, hiro - nall: Linux compiler defaults to g++; override with g++-version if g++ is <= 4.8 - FreeBSD compiler default is going to remain g++49 until my dev box OS ships with g++ >= 4.9 Errata: I have weird RAM initialization constants, thanks to hex_usr and onethirdxcubed for both finding this: http://wiki.nesdev.com/w/index.php?title=CPU_power_up_state&diff=11711&oldid=11184 I'll remove this in the next WIP. |
|
Talarubi | a9571ff5b8 |
Fixed: Restore SPC7110 and S-RTC time properly
Loading and unloading the RTC is a little odd, since it's normally always powered in the first place. What we want, and what the load() functions really do, is to resync using the saved timestamps or reset it. unload() proper doesn't do anything. However, an interface refactoring after v098 reordered the above operations, and this (along with a typo, shh!) was causing the already synced time to be cleared. I've added checks so that whenever rtc.ram can't be found, load() gets called with empty arguments to initialise the defaults (like putting in a fresh battery). |
|
Tim Allen | b38a657192 |
Update to v104r05 release.
byuu says: Changelog: - emulator/random: new array function with more realistic RAM initializations - emulator/random: both low and high entropy register initializations now use PCG - gba/player: rumble will time out and disable after being left on for 500ms; fixes Pokemon Pinball issue - ruby/input/udev: fixed rumble effects [ma\_rysia] - sfc/system: default to low-entropy randomization of memory The low-entropy memory randomization is modeled after one of my SHVC 2/1/3 systems. It generates striped patterns in memory, using random inputs (biased to 0x00/0xff), and has a random chance of corrupting 1-2 bits of random values in the pool of memory (to prevent easy emulator detection and to match observed results on hardware.) The reasoning for using PCG on register initializations, is that I don't believe they're going to have repeating patterns like RAM does anyway. And register initializations are way more vital. I want to have the new low-entropy RAM mode tested, so at least for the next few WIPs, I've set the SNES randomization over to low-entropy. We'll have to have a long discussion and decide whether we want official releases to use high-entropy or low-entropy. Also, I figured out the cause of the Prince of Persia distortion ... I had the volume under the audio settings tab set to 200%. I didn't realize there were SNES games that clipped so easily, given how incredibly weak SNES audio is compared to every other sound source on my PC. So with no entropy or low-entropy, indeed the game now sounds just fine. I can't actually test the udev fixes, so I guess we'll see how that goes for Screwtape and ma\_rysia. |
|
Tim Allen | d621136d69 |
Update to v104r04 release.
byuu says: Changelog: - higan/emulator: added new Random class with three entropy settings: none, low, and high - md/vdp: corrected Vcounter readout in interlace mode [MoD] - sfc: updated core to use the new Random class; defaults to high entropy No entropy essentially returns 0, unless the random.bias(n) function is called, in which case, it returns n. In this case, n is meant to be the "logical/ideal" default value that maximizes compatibility with games. Low entropy is a very simple entropy modeled after RAM initialization striping patterns (eg 32 0x00s, followed by 32 0xFFs, repeating throughout.) It doesn't "glitch" like real hardware does on rare occasions (parts of the pattern being broken from time to time.) It also only really returns 0 or ~0. So the entropy is indeed extremely low, and not very useful at all for detecting bugs. Over time, we can try to improve this, of course. High entropy is PCG. This replaces the older, lower-entropy and more predictable, LFSR. PCG should be more than enough for emulator randomness, while still being quite fast. Unfortunately, the bad news ... both no entropy and low entropy fix the Konami logo popping sound in Prince of Persia, but all three entropy settings still cause the distortion in-game, especially evident at the title screen. So ... this may be a more serious bug than first suspected. |
|
Tim Allen | ff3750de4f |
Update to v103r04 release.
byuu says: Changelog: - fc/apu: $4003,$4007 writes initialize duty counter to 0 instead of 7 - fc/apu: corrected duty table entries for use with decrementing duty counter - processor/spc700: emulated the behavior of cycle 3 of (x)+ instructions to not read I/O registers - specifically, this prevents reads from $fd-ff from resetting the timers, as observed on real hardware - sfc/controller: added ControllerPort class to match Mega Drive design - sfc/expansion: added ExpansionPort class to match Mega Drive design - sfc/system: removed Peripherals class - sfc/system: changed `colorburst()` to `cpuFrequency()`; added `apuFrequency()` - sfc: replaced calls to `system.region == System::Region::*` with `Region::*()` - sfc/expansion: remove thread from scheduler when device is destroyed - sfc/smp: `{read,write}Port` now use a separate 4x8-bit buffer instead of underlying APU RAM [hex\_usr] |
|
Tim Allen | 8476f35153 |
Update to v102r28 release.
byuu says: Changelog: - higan: `Emulator::<Platform::load>()` now returns a struct containing both a path ID and a string option - higan: `Emulator::<Platform::load>()` now takes an optional final argument of string options - fc: added PAL emulation (finally, only took six years) - md: added PAL emulation - md: fixed address parameter to `VDP::Sprite::write()`; fixes missing sprites in Super Street Fighter II - md: emulated HIRQ counter; fixes many games - Super Street Fighter II - status bar - Altered Beast - status bar - Sonic the Hedgehog - Labyrinth Zone - water effect - etc. - ms: added PAL emulation - sfc: added the ability to override the default region auto-detection - sfc: removed "system.region" override setting from `Super Famicom.sys` - tomoko: added options list to game folder load dialog window - tomoko: added the ability to specify game folder load options on the command-line So, basically ... Sega forced a change with the way region detection works. You end up with games that can run on multiple regions, and the content changes accordingly. Bare Knuckle in NTSC-J mode will become Streets of Rage in NTSC-U mode. Some games can even run in both NTSC and PAL mode. In my view, there should be a separate ROM for each region a game was released in, even if the ROM content were identical. But unfortunately that's not how things were done by anyone else. So to support this, the higan load dialog now has a drop-down at the bottom-right, where you can choose the region to load games from. On the SNES, it defaults to "Auto", which will pull the region setting from the manifest, or fall back on NTSC. On the Mega Drive ... unfortunately, I can't auto-detect the region from the ROM header. $1f0 is supposed to contain a string like "JUE", but instead you get games like Maui Mallard that put an "A" there, and other such nonsense. Sega was far more lax than Nintendo with the ROM header validity. So for now at least, you have to manually select your region every time you play a Mega Drive game, thus you have "NTSC-J", "NTSC-U", and "PAL". The same goes for the Master System for the same reason, but there's only "NTSC" and "PAL" here. I'm not sure if games have a way to detect domestic vs international consoles. And for now ... the Famicom is the same as well, with no auto-detection. I'd sincerely hope iNES has a header bit for the region, but I didn't bother with updating icarus to support that yet. The way to pass these parameters on the command-line is to prefix the game path with "option:", so for example: higan "PAL:/path/to/Sonic the Hedgehog (USA, Europe).md" If you don't provide a prefix, it uses the default (NTSC-J, NTSC, or Auto.) Obviously, it's not possible to pass parameters with drag-and-drop, so you will always get the default option in said case. |
|
Tim Allen | bdc100e123 |
Update to v102r02 release.
byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode. |
|
Tim Allen | bf90bdfcc8 |
Update to v101r31 release.
byuu says: Changelog: - converted Emulator::Interface::Bind to Emulator::Platform - temporarily disabled SGB hooks - SMS: emulated Game Gear palette (latching word-write behavior not implemented yet) - SMS: emulated Master System 'Reset' button, Game Gear 'Start' button - SMS: removed reset() functionality, driven by the mappable input now instead - SMS: split interface class in two: one for Master System, one for Game Gear - SMS: emulated Game Gear video cropping to 160x144 - PCE: started on HuC6280 CPU core—so far only registers, NOP instruction has been implemented Errata: - Super Game Boy support is broken and thus disabled - if you switch between Master System and Game Gear without restarting, bad things happen: - SMS→GG, no video output on the GG - GG→SMS, no input on the SMS I'm not sure what's causing the SMS\<-\>GG switch bug, having a hard time debugging it. Help would be very much appreciated, if anyone's up for it. Otherwise I'll keep trying to track it down on my end. |
|
Tim Allen | ca277cd5e8 |
Update to v100r14 release.
byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP. |
|
Tim Allen | 76a8ecd32a |
Update to v100r03 release.
byuu says: Changelog: - moved Thread, Scheduler, Cheat functionality into emulator/ for all cores - start of actual Mega Drive emulation (two 68K instructions) I'm going to be rather terse on MD emulation, as it's too early for any meaningful dialogue here. |
|
Tim Allen | 3a9c7c6843 |
Update to v099r09 release.
byuu says: Changelog: - Emulator::Interface::Medium::bootable removed - Emulator::Interface::load(bool required) argument removed [File::Required makes no sense on a folder] - Super Famicom.sys now has user-configurable properties (CPU,PPU1,PPU2 version; PPU1 VRAM size, Region override) - old nall/property removed completely - volatile flags supported on coprocessor RAM files now (still not in icarus, though) - (hopefully) fixed SNES Multitap support (needs testing) - fixed an OAM tiledata range clipping limit in 128KiB VRAM mode (doesn't fix Yoshi's Island, sadly) - (hopefully, again) fixed the input polling bug hex_usr reported - re-added dialog box for when File::Required files are missing - really cool: if you're missing a boot ROM, BIOS ROM, or IPL ROM, it warns you immediately - you don't have to select a game before seeing the error message anymore - fixed cheats.bml load/save location |
|
Tim Allen | f48b332c83 |
Update to v099r08 release.
byuu says: Changelog: - nall/vfs work 100% completed; even SGB games load now - emulation cores now call load() for the base cartridges as well - updated port/device handling; portmask is gone; device ID bug should be resolved now - SNES controller port 1 multitap option was removed - added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp VRAM::size=0x10000; to enable) Overall, nall/vfs was a huge success!! We've substantially reduced the amount of boilerplate code everywhere, while still allowing (even easier than before) support for RAM-based game loading/saving. All of nall/stream is dead and buried. I am considering removing Emulator::Interface::Medium::id and/or bootable flag. Or at least, doing something different with it. The values for the non-bootable GB/BS/ST entries duplicate the ID that is supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use this as the hardware revision selection ID, and then gut non-bootable options. There's really no reason for that to be there. I think at one point I was using it to generate library tabs for non-bootable systems, but we don't do that anymore anyway. Emulator::Interface::load() may not need the required flag anymore ... it doesn't really do anything right now anyway. I have a few reasons for having the cores load the base cartridge. Most importantly, it is going to enable a special mode for the WonderSwan / WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's possible to boot these systems with no games inserted to set user profile information and such. There are also other systems that may accept being booted without a cartridge. To reach this state, you would load a game and then cancel the load dialog. Right now, this results in games not loading. The second reason is this prevents nasty crashes when loading fails. So if you're missing a required manifest, the emulator won't die a violent death anymore. It's able to back out at any point. The third reason is consistency: loading the base cartridge works the same as the slot cartridges. The fourth reason is Emulator::Interface::open(uint pathID) values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This complicated things because you had to pass the correct ID. But now instead, Emulator::Interface::load() returns maybe<uint> that is nothing when no game is selected, and a pathID for a valid game. And now open() can take this ID to access this game's folder contents. The downside, which is temporary, is that command-line loading is currently broken. But I do intend on restoring it. In fact, I want to do better than before and allow multi-cart booting from the command-line by specifying the base cartridge and then slot cartridges. The idea should be pretty simple: keep a queue of pending filenames that we fill from the command-line and/or drag-and-drop operations on the main window, and then empty out the queue or prompt for load dialogs from the UI when booting a system. This also might be a bit more unorthodox compared to the traditional emulator design of "loadGame(filename)", but ... oh well. It's easy enough still. The port/device changes are fun. We simplified things quite a bit. The portmask stuff is gone entirely. While ports and devices keep IDs, this is really just sugar-coating so UIs can use for(auto& port : emulator->ports) and access port.id; rather than having to use for(auto n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... }; but they should otherwise generally be identical to the order they appear in their respective ranges. Still, don't rely on that. Input::id is gone. There was no point since we also got rid of the nasty Input::order vector. Since I was in here, I went ahead and caved on the pedantics and renamed Input::guid to Input::userData. I removed the SNES controller port 1 multitap option. Basically, the only game that uses this is N-warp Daisakusen and, no offense to d4s, it's not really a good game anyway. It's just a quick demo to show 8-players on the SNES. But in the UI, all it does is confuse people into wasting time mapping a controller they're never going to use, and they're going to wonder which port to use. If more compelling use cases for 8-players comes about, we can reconsider this. I left all the code to support this in place, so all you have to do is uncomment one line to enable it again. We now have dsnes emulation! :D If you change PPU::VRAM::size to 0x10000 (words), then you should now have 128KiB of VRAM. Even better, it serializes the used-VRAM size, so your save states shouldn't crash on you if you swap between the two (though if you try this, you're nuts.) Note that this option does break commercial software. Yoshi's Island in particular. This game is setting A15 on some PPU register writes, but not on others. The end result of this is things break horribly in-game. Also, this option is causing a very tiny speed hit for obvious reasons with the variable masking value (I'm even using size-1 for now.) Given how niche this is, I may just leave it a compile-time constant to avoid the overhead cost. Otherwise, if we keep the option, then it'll go into Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future. ---- Finally, some fun for my OCD ... my monitor suddenly cut out on me in the middle of working on this WIP, about six hours in of non-stop work. Had to hit a bunch of ctrl+alt+fN commands (among other things) and trying to log in headless on another TTY to do issue commands, trying to recover the display. Finally power cycled the monitor and it came back up. So all my typing ended up going to who knows where. Usually this sort of thing terrifies me enough that I scrap a WIP and start over to ensure I didn't screw anything up during the crashed screen when hitting keys randomly. Obviously, everything compiles and appears to work fine. And I know it's extremely paranoid, but OCD isn't logical, so ... I'm going to go over every line of the 100KiB r07->r08 diff looking for any corruption/errors/whatever. ---- Review finished. r08 diff review notes: - fc/controller/gamepad/gamepad.cpp: use uint device = ID::Device::Gamepad; not id = ...; - gb/cartridge/cartridge.hpp: remove redundant uint _pathID; (in Information::pathID already) - gb/cartridge/cartridge.hpp: pull sha256 inside Information - sfc/cartridge/load/cpp: add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more descriptive - sfc/controller/gamepad/gamepad.cpp: use uint device = ID::Device::Gamepad; not id = ...; - sfc/interface/interface.cpp: remove n variable from the Multitap device input generation loop (now unused) - sfc/interface/interface.hpp: put struct Port above struct Device like the other classes - ui-tomoko: cheats.bml is reading from/writing to mediumPaths(0) [system folder instead of game folder] - ui-tomoko: instead of mediumPaths(1) - call emulator->metadataPathID() or something like that |
|
Tim Allen | 875f031182 |
Update to v099r06 release.
byuu says: Changelog: - Super Famicom core converted to use nall/vfs - excludes Super Game Boy; since that's invoked from inside the GB core This was definitely the major obstacle to test nall/vfs' applicability. Things worked out pretty great in the end. We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB (cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes a very large source of indirection. Before it was: "coprocessor <=> cartridge <=> interface" for loading and saving data, and now it's just "coprocessor <=> cartridge". And it may make sense to eventually turn this into just "cartridge -> coprocessor" by making each coprocessor class handle its own markup parsing. It's nice to have all the manifest parsing in one location (well, sans MSU1); but it's also nice for loading/unloading to be handled by each coprocessor itself. So I'll have to think longer about that one. I've also started handling Interface::save() differently. Instead of keeping track of memory IDs and filenames, and iterating through that vector of objects ... instead I now have a system that mirrors the markup parsing on loading, but handles saving instead. This was actually the reason the code size savings weren't more significant, but I like this style more. As before, it removes an extra level of indirection. So ... next up, I need to port over the GB, then GBA, then WS cores. These shouldn't take too long since they're all very simple with just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then after that, gut all the old stream stuff from nall and higan. Kill the (load,save)Request stuff, rename the load(Gamepak)Request to something simpler, and then we should be good. Anyway ... these are some huge changes. |
|
Tim Allen | 44a8c5a2b4 |
Update to v099r03 release.
byuu says: Changelog: - finished cleaning up the SFC core to my new coding conventions - removed sfc/controller/usart (superseded by 21fx) - hid Synchronize Video option from the menu (still in the configuration file) Pretty much the only minor detail left is some variable names in the SA-1 core that really won't look good at all if I move to camelCase, so I'll have to rethink how I handle those. It's probably a good area to attempt using BitFields, to see how it impacts performance. But I'll do that in a test branch first. But for the most part, this should be the end of the gigantic diffs (this one was 174KiB), at least for the SFC/WS cores. Still have the FC/GB/GBA cores to clean up more fully. Assuming we don't spot any new regressions, we should be ~95% out of the woods on code cleanups breaking things. |
|
Tim Allen | ae5b4c3bb3 |
Update to v099r01 release.
byuu says: Changelog: - massive cleanups and optimizations on the PPU core - ~9% speedup over v099 official This is pretty much it for the low-hanging fruit of speeding up higan. Any more gains from this point will be extremely hard-fought, unfortunately. |
|
Tim Allen | e2ee6689a0 |
Update to v098r06 release.
byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad. |
|
Tim Allen | a2d3b8ba15 |
Update to v098r04 release.
byuu says: Changelog: - SFC: fixed behavior of 21fx $21fe register when no device is connected (must return zero) - SFC: reduced 21fx buffer size to 1024 bytes in both directions to mirror the FT232H we are using - SFC: eliminated dsp/modulo-array.hpp [1] - higan: implemented higan/video interface and migrated all cores to it [2] [1] the echo history buffer was 8-bytes, so there was no need for it at all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and has very weird behavior ... but there's only a single location in the code where it actually writes to this buffer. It's much easier to just write to the buffer three times there instead of implementing an entire class just to abstract away two lines of code. This change actually boosted the speed from ~124.5fps to around ~127.5fps, but that's within the margin of error for GCC. I doubt it's actually faster this way. The DSP core could really use a ton of work. It comes from a port of blargg's spc_dsp to my coding style, but he was extremely fond of using 32-bit signed integers everywhere. There's a lot of opportunity to remove red tape masking by resizing the variables to their actual state sizes. I really need to find where I put spc_dsp6.sfc from blargg. It's a great test to verify if I've made any mistakes in my implementation that would cause regressions. Don't suppose anyone has it? [2] so again, the idea is that higan/audio and higan/video are going to sit between the emulation cores and the user interfaces. The hope is to output raw encoding data from the emulation cores without having to worry about the video display format (generally 24-bit RGB) of the host display. And also to avoid having to repeat myself with eg three separate implementations of interframe blending, and so on. Furthermore, the idea is that the user interface can configure its side of the settings, and the emulation cores can configure their sides. Thus, neither has to worry about the other end. And now we can spin off new user interfaces much easier without having to mess with all of these things. Right now, I've implemented color emulation, interframe blending and SNES horizontal color bleed. I did not implement scanlines (and interlace effects for them) yet, but I probably will at some point. Further, for right now, the WonderSwan/Color screen rotation is busted and will only show games in the horizontal orientation. Obviously this must be fixed before the next official release, but I'll want to think about how to implement it. Also, the SNES light gun pointers are missing for now. Things are a bit messy right now as I've gone through several revisions of how to handle these things, so a good house cleaning is in order once everything is feature-complete again. I need to sit down and think through how and where I want to handle things like light gun cursors, LCD icons, and maybe even rasterized text messages. And obviously ... higan/audio is still just nall::DSP's headers. I need to revamp that whole interface. I want to make it quite powerful with a true audio mixer so I can handle things like SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.) The video system has the concept of "effects" for things like color bleed and interframe blending. I want to extend on this with useful other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x filter, etc. I'd also like to restore the saturation/gamma/luma adjustment sliders ... I always liked allowing people to compensate for their displays without having to change settings system-wide. Lastly, I've always wanted to see some audio effects. Although I doubt we'll ever get my dream of CoreAudio-style profiles, I'd like to get some basic equalizer settings and echo/reverb effects in there. |
|
Tim Allen | 1929ad47d2 |
Update to v098r03 release.
byuu says: It took several hours, but I've rebuilt much of the SNES' bus memory mapping architecture. The new design unifies the cartridge string-based mapping ("00-3f,80-bf:8000-ffff") and internal bus.map calls. The map() function now has an accompanying unmap() function, and instead of a fixed 256 callbacks, it'll scan to find the first available slot. unmap() will free slots up when zero addresses reference a given slot. The controllers and expansion port are now both entirely dynamic. Instead of load/unload/power/reset, they only have the constructor (power/reset/load) and destructor (unload). What this means is you can now dynamically change even expansion port devices after the system is loaded. Note that this is incredibly dangerous and stupid, but ... oh well. The whole point of this was for 21fx. There's no way to change the expansion port device prior to loading a game, but if the 21fx isn't active, then the reset vector hijack won't work. Now you can load a 21fx game, change the expansion port device, and simply reset the system to active the device. The unification of design between controller port devices and expansion port devices is nice, and overall this results in a reduction of code (all of the Mapping stuff in Cartridge is gone, replaced with direct bus mapping.) And there's always the potential to expand this system more in the future now. The big missing feature right now is the ability to push/pop mappings. So if you look at how the 21fx does the reset vector, you might vomit a little bit. But ... it works. Also changed exit(0) to _exit(0) in the POSIX version of nall::execute. [The _exit(0) thing is an attempt to make higan not crash when it tries to launch icarus and it's not on $PATH. The theory is that higan forks, then the child tries to exec icarus and fails, so it exits, all the unique_ptrs clean up their resources and tell the X server to free things the parent process is still using. Calling _exit() prevents destructors from running, and seems to prevent the problem. -Ed.] |
|
Tim Allen | 19e1d89f00 |
Update to v098r01 release.
byuu says: Changelog: - SFC: balanced profile removed - SFC: performance profile removed - SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed - SFC: Coprocessor, Controller (and expansion port) shared Thread code merged to SFC::Cothread - Cothread here just means "Thread with CPU affinity" (couldn't think of a better name, sorry) - SFC: CPU now has vector<Thread*> coprocessors, peripherals; - this is the beginning of work to allow expansion port devices to be dynamically changed at run-time - ruby: all audio drivers default to 48000hz instead of 22050hz now if no frequency is assigned - note: the WASAPI driver can default to whatever the native frequency is; doesn't have to be 48000hz - tomoko: removed the ability to change the frequency from the UI (but it will display the frequency used) - tomoko: removed the timing settings panel - the goal is to work toward smooth video via adaptive sync - the model is broken by not being in control of the audio frequency anyway - it's further broken by PAL running at 50hz and WSC running at 75hz - it was always broken anyway by SNES interlace timing varying from progressive timing - higan: audio/ stub created (for now, it's just nall/dsp/ moved here and included as a header) - higan: video/ stub created - higan/GNUmakefile: now includes build rules for essential components (libco, emulator, audio, video) The audio changes are in preparation to merge wareya's awesome WASAPI work without the need for the nall/dsp resampler. |
|
Tim Allen | 25eaaa82f4 |
Update to v097r31 release.
byuu says: Changelog: - WS: fixed sprite window clipping (again) - WS: don't set IRQ status bits of IRQ enable bits are clear - SFC: signed/unsigned -> int/uint for DSP core - SFC: removed eBoot - SFC: added 21fx (not the same as the old precursor to MSU1; just reusing the name) Note: XI Little doesn't seem to be fixed after all ... but the other three are. So I guess we're at 13 bugs :( And holy shit that music when you choose a menu option is one of the worst sounds I've ever heard in my life >_< |
|
Tim Allen | 3d3ac8c1db |
Update to v097r22 release.
byuu says: Changelog: - WS: fixed lods, scas instructions - WS: implemented missing GRP4 instructions - WS: fixed transparency for screen one - WSC: added color-mode PPU rendering - WS+WSC: added packed pixel mode support - WS+WSC: added dummy sound register reads/writes - SFC: added threading to SuperDisc (it's hanging for right now; need to clear IRQ on $21e2 writes) SuperDisc Timer and Sound Check were failing before due to not turning off IRQs on $21e4 clear, so I'm happy that's fixed now. Riviera starts now, and displays the first intro screen before crashing. Huge, huge amounts of corrupted graphics, though. This game's really making me work for it :( No color games seem fully playable yet, but a lot of monochrome and color games are now at least showing more intro screen graphics before dying. This build defaults to horizontal orientation, but I left the inputs bound to vertical orientation. Whoops. I still need to implement a screen flip key binding. |
|
Tim Allen | b0d2f5033e |
Update to v097r21 release.
byuu says: Changelog: - icarus: WS/C detects RAM type/size heuristically now - icarus: WS/C uses ram type=$type instead of $type - WS: use back color instead of white for backdrop - WS: fixed sprite count limit; removes all the garbled sprites from GunPey - WS: hopefully fixed sprite priority with screen 2 - WS: implemented keypad polling; GunPey is now fully playable - SNES: added Super Disc expansion port device (doesn't do anything, just for testing) Note: WS is hard-coded to vertical orientation right now. But there's basic code in there for all the horizontal stuff. |
|
Tim Allen | 6c83329cae |
Update to v097r13 release.
byuu says: I refactored my schedulers. Added about ten lines to each scheduler, and removed about 100 lines of calling into internal state in the scheduler for the FC,SFC cores and about 30-40 lines for the other cores. All of its state is now private. Also reworked all of the entry points to static auto Enter() and auto main(). Where Enter() handles all the synchronization stuff, and main() doesn't need the while(true); loop forcing another layer of indentation everywhere. Took a few hours to do, but totally worth it. I'm surprised I didn't do this sooner. Also updated icarus gmake install rule to copy over the database. |
|
Tim Allen | 32a95a9761 |
Update to v097r12 release.
byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now. |
|
Tim Allen | f1ebef2ea8 |
Update to v097r01 release.
byuu says: A minor WIP to get us started. Changelog: - System::Video merged to PPU::Video - System::Audio merged to DSP::Audio - System::Configuration merged to Interface::Settings - created emulator/emulator.cpp and accompanying object file for shared code between all cores Currently, emulator.cpp just holds a videoColor() function that takes R16G16B16, performs gamma/saturation/luma adjust, and outputs (currently) A8R8G8B8. It's basically an internal function call for cores to use when generating palette entries. This code used to exist inside ui-tomoko/program/interface.cpp, but we have to move it internal for software display emulation. But in the future, we could add other useful cross-core functionality here. |
|
Tim Allen | 12df278c5b |
Update to v096r08 release.
byuu says: Changelog: - FC: scanline emulation support added - SFC: balanced profile compiles again - SFC: performance profile compiles again - GB,GBC: more fixes to pass blargg's 07, 08, 11 APU tests - tomoko: added input loss { pause, allow-input } options - tomoko: refactored settings video menu options to { Video Scale, Video Emulation, Video Shader } - icarus: connected { About, Preferences, Quit } application menu options |
|
Tim Allen | cec33c1d0f |
Update to v096r07 release.
byuu says: Changelog: - configuration files are now stored in localpath() instead of configpath() - Video gamma/saturation/luminance sliders are gone now, sorry - added Video Filter->Blur Emulation [1] - added Video Filter->Scanline Emulation [2] - improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn] [1] For the Famicom, this does nothing. For the Super Famicom, this performs horizontal blending for proper pseudo-hires translucency. For the Game Boy, Game Boy Color, and Game Boy Advance, this performs interframe blending (each frame is the average of the current and previous frame), which is important for things like the GBVideoPlayer. [2] Right now, this only applies to the Super Famicom, but it'll come to the Famicom in the future. For the Super Famicom, this option doesn't just add scanlines, it simulates the phosphor decay that's visible in interlace mode. If you observe an interlaced game like RPM Racing on a real SNES, you'll notice that even on perfectly still screens, the image appears to shake. This option emulates that effect. Note 1: the buffering right now is a little sub-optimal, so there will be a slight speed hit with this new support. Since the core is now generating native ARGB8888 colors, it might as well call out to the interface to lock/unlock/refresh the video, that way it can render directly to the screen. Although ... that might not be such a hot idea, since the GBx interframe blending reads from the target buffer, and that tends to be a catastrophic option for performance. Note 2: the balanced and performance profiles for the SNES are completely busted again. This WIP took 6 1/2 hours, and I'm exhausted. Very much not looking forward to working on those, since those two have all kinds of fucked up speedup tricks for non-interlaced and/or non-hires video modes. Note 3: if you're on Windows and you saved your system folders somewhere else, now'd be a good time to move them to %localappdata%/higan |
|
Tim Allen | 47d4bd4d81 |
Update to v096r01 release.
byuu says: Changelog: - restructured the project and removed a whole bunch of old/dead directives from higan/GNUmakefile - huge amounts of work on hiro/cocoa (compiles but ~70% of the functionality is commented out) - fixed a masking error in my ARM CPU disassembler [Lioncash] - SFC: decided to change board cic=(411,413) back to board region=(ntsc,pal) ... the former was too obtuse If you rename Boolean (it's a problem with an include from ruby, not from hiro) and disable all the ruby drivers, you can compile an OS X binary, but obviously it's not going to do anything. It's a boring WIP, I just wanted to push out the project structure change now at the start of this WIP cycle. |
|
Tim Allen | 4e2eb23835 |
Update to v093 release.
byuu says: Changelog: - added Cocoa target: higan can now be compiled for OS X Lion [Cydrak, byuu] - SNES/accuracy profile hires color blending improvements - fixes Marvelous text [AWJ] - fixed a slight bug in SNES/SA-1 VBR support caused by a typo - added support for multi-pass shaders that can load external textures (requires OpenGL 3.2+) - added game library path (used by ananke->Import Game) to Settings->Advanced - system profiles, shaders and cheats database can be stored in "all users" shared folders now (eg /usr/share on Linux) - all configuration files are in BML format now, instead of XML (much easier to read and edit this way) - main window supports drag-and-drop of game folders (but not game files / ZIP archives) - audio buffer clears when entering a modal loop on Windows (prevents audio repetition with DirectSound driver) - a substantial amount of code clean-up (probably the biggest refactoring to date) One highly desired target for this release was to default to the optimal drivers instead of the safest drivers, but because AMD drivers don't seem to like my OpenGL 3.2 driver, I've decided to postpone that. AMD has too big a market share. Hopefully with v093 officially released, we can get some public input on what AMD doesn't like. |
|
Tim Allen | 29ea5bd599 |
Update to v092r09 release.
byuu says: This will be another massive diff from the previous version. All of higan was updated to use the new foo& bar syntax, and I also updated switch statements to be consistent as well (but not in the disassemblers, was starting to get an RSI just from what I already did.) phoenix/{windows, cocoa, qt} need to be updated to use "string foo" instead of "const string& foo", and after that, the major diffs should be finished. This archive is the first time I'm posting my copy-on-write, size+capacity nall::string class, so any feedback on that is welcome as well. |
|
Tim Allen | d9400084c2 |
Update to v092r02 release.
byuu says: Changelog: - merged AWJ's hires color blending improvements (most notably: fixes Marvelous' text) - created sfc/base/ to store base unit (expansion port device) emulation - synchronized the markup of Satellaview and Sufami Turbo cartridge slots in the board markup - fixed "Initializing ..." typo in timing settings If at all possible, I'd really like to have heavy testing of games that use hires graphics to check for any regressions. I trust AWJ's code, and all of the test ROMs I have thrown at it all appear to work great. But better safe than sorry. Same deal for any core changes, it's a lot better to catch it now than after v093 is released. |
|
Tim Allen | bbc33fe05f |
Update to higan v092r01, ananke v02r01 and purify v03r01 releases.
byuu says: higan changelog: - compiler is set to g++-4.7, subst(cc,++) rule is gone, C files compile with $(compiler) -x c - make throws an error when you specify an invalid profile or compile on an unsupported platform (instead of hanging forever) - added unverified.png to resources (causes too big of a speed hit to actually check for folder/unverified file ... so disabled for now) - fixed default browser paths for Game Boy, Sufami Turbo and BS-X Satellaview (have to delete paths.cfg to see this) - browser home button seeks to configpath()/higan/library.cfg - settings->driver is now settings->advanced, and it adds game library path setting and profile information - emulation cores now load manifest files internally, manifest.bml is not required for a game folder to be recognized by higan as such - BS-X Satellaview and Sufami Turbo slot cartridge handling moved out of sfc/chip and into sfc/slot - Video::StartFullScreen only sets fullscreen when a game is specified on the command-line purify and ananke changelog: - library output path shown in purify window - added button to change library path - squelch firmware warning windows to prevent multi-threading crash, but only via purify (they show up in higan still) |
|
Tim Allen | 032e924495 |
Update to v092 release.
In the release thread, byuu says: The first official release of higan has been posted. higan is the new name for bsnes, and it continues with the latter's version numbering. Note that as of now, bsnes still exists. It's a module distributed inside of higan. bsnes is now specific to my SNES emulator. Due to last minute changes to the emulator interface, and missing support in ananke, I wasn't able to include Cydrak's Nintendo DS emulator dasShiny in this build, but I hope to do so in the next release. http://code.google.com/p/higan/downloads/list For both new and experienced users, please read the higan user guide first: http://byuu.org/higan/user-guide In the v091 WIP thread, byuu says: r15->r16: - BS-X MaskROM handling (partial ... need to split bsx/flash away from sfc/chip, restructure code - it requires tagging the base cart markup for now, but it needs to parse the slotted cart markup) - phoenixflags / phoenixlink += -m32 - nall/sort stability - if(input.poll(scancode[activeScancode]) == false) return; - MSU1 / USART need to use interface->path(1) - MSU1 needs to use Markup::Document, not XML::Document - case-insensitive folder listings - remove nall/emulation/system.hpp files (move to ananke) - remove rom/ram id= checks with indexing X have cores ask for manifest.bml (skipped for v092's release, too big a change) - rename compatibility profile to balanced (so people don't assume it has better compatibility than accuracy) |
|
Tim Allen | d4751c5244 |
Update to v091r10 release.
byuu says: This release adds HSU1 support, and fixes the reduce() memory mapping function. |
|
Tim Allen | ab345ff20c |
Update to v091r09 release.
[r07 and r08 were not posted to the WIP thread. -Ed.] byuu says: I'd appreciate it if you guys wouldn't mind testing out the database functionality. Save this file as database.bml (remove the date) inside ~/.config/higan/Super Famicom.sfc/ or %APPDATA%/higan/Super Famicom.sfc/ http://byuu.org/snes/database/database_2012-10-21.bml Now load any of the 20 games in the database from the file dialog. They need to be named *.sfc, have no copier header, and have firmware appended (for Mario Kart only so far.) If anyone actually does test it, please let me know how it goes for you and what you think. Note that future versions of higan will have the database.bml file included with the release. |
|
Tim Allen | ef746bbda4 |
Update to v091r05 release.
[No prior releases were posted to the WIP thread. -Ed.] byuu says: Super Famicom mapping system has been reworked as discussed with the mask= changes. offset becomes base, mode is gone. Also added support for comma-separated fields in the address fields, to reduce the number of map lines needed. <?xml version="1.0" encoding="UTF-8"?> <cartridge region="NTSC"> <superfx revision="2"> <rom name="program.rom" size="0x200000"/> <ram name="save.rwm" size="0x8000"/> <map id="io" address="00-3f,80-bf:3000-32ff"/> <map id="rom" address="00-3f:8000-ffff" mask="0x8000"/> <map id="rom" address="40-5f:0000-ffff"/> <map id="ram" address="00-3f,80-bf:6000-7fff" size="0x2000"/> <map id="ram" address="70-71:0000-ffff"/> </superfx> </cartridge> Or in BML: cartridge region=NTSC superfx revision=2 rom name=program.rom size=0x200000 ram name=save.rwm size=0x8000 map id=io address=00-3f,80-bf:3000-32ff map id=rom address=00-3f:8000-ffff mask=0x8000 map id=rom address=40-5f:0000-ffff map id=ram address=00-3f,80-bf:6000-7fff size=0x2000 map id=ram address=70-71:0000-ffff As a result of the changes, old mappings will no longer work. The above XML example will run Super Mario World 2: Yoshi's Island. Otherwise, you'll have to write your own. All that's left now is to work some sort of database mapping system in, so I can start dumping carts en masse. The NES changes that FitzRoy asked for are mostly in as well. Also, part of the reason I haven't released a WIP ... but fuck it, I'm not going to wait forever to post a new WIP. I've added a skeleton driver to emulate Campus Challenge '92 and Powerfest '94. There's no actual emulation, except for the stuff I can glean from looking at the pictures of the board. It has a DSP-1 (so SR/DR registers), four ROMs that map in and out, RAM, etc. I've also added preliminary mapping to upload high scores to a website, but obviously I need the ROMs first. |
|
Tim Allen | 94b2538af5 |
Update to higan v091 release.
byuu says: Basically just a project rename, with s/bsnes/higan and the new icon from lowkee added in. It won't compile on Windows because I forgot to update the resource.rc file, and a path transform command isn't working on Windows. It was really just meant as a starting point, so that v091 WIPs can flow starting from .00 with the new name (it overshadows bsnes v091, so publicly speaking this "shouldn't exist" and will probably be deleted from Google Code when v092 is ready.) |