byuu says:
Changelog:
- ruby/audio/xaudio2: ported to new ruby API
- ruby/video/cgl: ported to new ruby API (untested, won't compile)
- ruby/video/directdraw: ported to new ruby API
- ruby/video/gdi: ported to new ruby API
- ruby/video/glx: ported to new ruby API
- ruby/video/wgl: ported to new ruby API
- ruby/video/opengl: code cleanups
The macOS CGL driver is sure to have compilation errors. If someone will
post the compilation error log, I can hopefully fix it in one or two
iterations of WIPs.
I am unable to test the Xorg GLX driver, because my FreeBSD desktop
video card drivers do not support OpenGL 3.2. If the driver doesn't
work, I'm going to need help tracking down what broke from the older
releases.
The real fun is still yet to come ... all the Linux-only drivers, where
I don't have a single Linux machine to test with.
Todo:
- libco/fiber
- libco/ucontext (I should really just delete this)
- tomoko: hide main UI window when in exclusive fullscreen mode
byuu says:
Changelog:
- ruby/video: cleaned up Direct3D9 driver and fixed catastrophic
memory leak
- ruby/video: added fullscreen exclusive mode support to the Direct3D9
driver¹
- ruby/video: minor cosmetic code cleanups to various drivers
- tomoko: added support to always allow input when in fullscreen
exclusive mode
- tomoko: fixed window to not remove resizability flag when exiting
fullscreen mode
¹: I am assuming that exclusive mode will try to capture the primary
monitor. I don't know what will happen in multi-monitor setups, however,
as I don't use such a setup here.
Also, I am using `D3DPRESENT_DISCARD` instead of `D3DPRESENT_FLIP`. I'm
not sure if this will prove better or worse, but I've heard it will
waste less memory, and having a BackBufferCount of 1 should still result
in page flipping anyway. The difference is supposedly just that you
can't rely on the back buffer being a valid copy of the previous frame
like you can with FLIP.
Lastly, if you want Vsync, you can edit the configuration file to enable
that, and then turn off audio sync.
Errata: "pause emulation when focus is lost" is not working with
exclusive mode. I need to add a check to never auto-pause when in
exclusive mode. Thanks to bun for catching that one.
byuu says:
Changelog:
- (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel
like they were contributing enough to be worth it]
- cleaned up nall::integer,natural,real functionality
- toInteger, toNatural, toReal for parsing strings to numbers
- fromInteger, fromNatural, fromReal for creating strings from numbers
- (string,Markup::Node,SQL-based-classes)::(integer,natural,real)
left unchanged
- template<typename T> numeral(T value, long padding, char padchar)
-> string for print() formatting
- deduces integer,natural,real based on T ... cast the value if you
want to override
- there still exists binary,octal,hex,pointer for explicit print()
formatting
- lstring -> string_vector [but using lstring = string_vector; is
declared]
- would be nice to remove the using lstring eventually ... but that'd
probably require 10,000 lines of changes >_>
- format -> string_format [no using here; format was too ambiguous]
- using integer = Integer<sizeof(int)*8>; and using natural =
Natural<sizeof(uint)*8>; declared
- for consistency with boolean. These three are meant for creating
zero-initialized values implicitly (various uses)
- R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees
up struct IO {} io; naming]
- SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {}
(status,registers); now
- still some CPU::Status status values ... they didn't really fit into
IO functionality ... will have to think about this more
- SFC CPU, PPU, SMP now use step() exclusively instead of addClocks()
calling into step()
- SFC CPU joypad1_bits, joypad2_bits were unused; killed them
- SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it
- SFC PPU OAM moved into PPU::Object; since nothing else uses it
- the raw uint8[544] array is gone. OAM::read() constructs values from
the OAM::Object[512] table now
- this avoids having to determine how we want to sub-divide the two
OAM memory sections
- this also eliminates the OAM::synchronize() functionality
- probably more I'm forgetting
The FPS fluctuations are driving me insane. This WIP went from 128fps to
137fps. Settled on 133.5fps for the final build. But nothing I changed
should have affected performance at all. This level of fluctuation makes
it damn near impossible to know whether I'm speeding things up or slowing
things down with changes.
byuu says:
Changelog:
- fixed SNES sprite priority regression from r17
- added nall/windows/guard.hpp to guard against global namespace
pollution (similar to nall/xorg/guard.hpp)
- almost fixed Windows compilation (still accuracy profile only, sorry)
- finished porting all of gba/ppu's registers over to the new .bit,.bits
format ... all GBA registers.cpp files gone now
- the "processors :=" line in the target-$(ui)/GNUmakefile is no longer
required
- processors += added to each emulator core
- duplicates are removed using the new nall/GNUmakefile's $(unique)
function
- SFC core can be compiled without the GB core now
- "-DSFC_SUPERGAMEBOY" is required to build in SGB support now (it's
set in target-tomoko/GNUmakefile)
- started once again on loki (higan/target-loki/) [as before, loki is
Linux/BSD only on account of needing hiro::Console]
loki shouldn't be too horrendous ... I hope. I just have the base
skeleton ready for now. But the code from v094r08 should be mostly
copyable over to it. It's just that it's about 50KiB of incredibly
tricky code that has to be just perfect, so it's not going to be quick.
But at least with the skeleton, it'll be a lot easier to pick away at it
as I want.
Windows compilation fix: move hiro/windows/header.hpp line 18 (header
guard) to line 16 instead.
byuu says:
Warning: this is not for the faint of heart. This is a very early,
unpolished, buggy release. But help testing/fixing bugs would be greatly
appreciated for anyone willing.
Requirements:
- Mac OS X 10.7+
- Xcode 7.2+
Installation Commands:
cd higan
gmake -j 4
gmake install
cd ../icarus
gmake -j 4
gmake install
(gmake install is absolutely required, sorry. You'll be missing key
files in key places if you don't run it, and nothing will work.)
(gmake uninstall also exists, or you can just delete the .app bundles
from your Applications folder, and the Dev folder on your desktop.)
If you want to use the GBA emulation, then you need to drop the GBA BIOS
into ~/Emulation/System/Game\ Boy\ Advance.sys\bios.rom
Usage:
You'll now find higan.app and icarus.app in your Applications folders.
First, run icarus.app, navigate to where you keep your game ROMs. Now
click the settings button at the bottom right, and check "Create
Manifests", and click OK. (You'll need to do this every time you run
icarus because there's some sort of bug on OSX saving the settings.) Now
click "Import", and let it bring in your games into ~/Emulation.
Note: "Create Manifests" is required. I don't yet have a pipe
implementation on OS X for higan to invoke icarus yet. If you don't
check this box, it won't create manifest.bml files, and your games won't
run at all.
Now you can run higan.app. The first thing you'll want to do is go to
higan->Preferences... and assign inputs for your gamepads. At the very
least, do it for the default controller for all the systems you want to
emulate.
Now this is very important ... close the application at this point so
that it writes your config file to disk. There's a serious crashing bug,
and if you trigger it, you'll lose your input bindings.
Now the really annoying part ... go to Library->{System} and pick the
game you want to play. Right now, there's a ~50% chance the application
will bomb. It seems the hiro::pListView object is getting destroyed, yet
somehow the internal Cocoa callbacks are being triggered anyway. I don't
know how this is possible, and my attempts to debug with lldb have been
a failure :(
If you're unlucky, the application will crash. Restart and try again. If
it crashes every single time, then you can try launching your game from
the command-line instead. Example:
open /Applications/higan.app \
--args ~/Emulation/Super\ Famicom/Zelda3.sfc/
Help wanted:
I could really, really, really use some help with that crashing on game
loading. There's a lot of rough edges, but they're all cosmetic. This
one thing is pretty much the only major show-stopping issue at the
moment, preventing a wider general audience pre-compiled binary preview.
byuu says:
This WIP substantially restructures the ruby API for the first time
since that project started.
It is my hope that with this restructuring, destruction of the ruby
objects should now be deterministic, which should fix the crashing on
closing the emulator on Linux. We'll see I guess ... either way, it
removed two layers of wrappers from ruby, so it's a pretty nice code
cleanup.
It won't compile on Windows due to a few issues I didn't see until
uploading the WIP, too lazy to upload another. But I fixed all the
compilation issues locally, so it'll work on Windows again with the next
WIP (unless I break something else.)
(Kind of annoying that Linux defines glActiveTexture but Windows
doesn't.)
byuu says:
Finally!! Compilation works once again on Windows.
However, it's pretty buggy. Modality isn't really working right, you can
still poke at other windows, but when you select ListView items, they
redraw as empty boxes (need to process WM_DRAWITEM before checking
modality.)
The program crashes when you close it (probably a ruby driver's term()
function, that's what it usually is.)
The Layout::setEnabled(false) call isn't working right, so you get that
annoying chiming sound and cursor movement when mapping keyboard keys to
game inputs.
The column sizing seems off a bit on first display for the Hotkeys tab.
And probably lots more.
byuu says:
Changelog:
- added Cocoa target: higan can now be compiled for OS X Lion
[Cydrak, byuu]
- SNES/accuracy profile hires color blending improvements - fixes
Marvelous text [AWJ]
- fixed a slight bug in SNES/SA-1 VBR support caused by a typo
- added support for multi-pass shaders that can load external textures
(requires OpenGL 3.2+)
- added game library path (used by ananke->Import Game) to
Settings->Advanced
- system profiles, shaders and cheats database can be stored in "all
users" shared folders now (eg /usr/share on Linux)
- all configuration files are in BML format now, instead of XML (much
easier to read and edit this way)
- main window supports drag-and-drop of game folders (but not game files
/ ZIP archives)
- audio buffer clears when entering a modal loop on Windows (prevents
audio repetition with DirectSound driver)
- a substantial amount of code clean-up (probably the biggest
refactoring to date)
One highly desired target for this release was to default to the optimal
drivers instead of the safest drivers, but because AMD drivers don't
seem to like my OpenGL 3.2 driver, I've decided to postpone that. AMD
has too big a market share. Hopefully with v093 officially released, we
can get some public input on what AMD doesn't like.
byuu describes the changes since v067:
This release officially introduces the accuracy and performance cores,
alongside the previously-existing compatibility core. The accuracy core
allows the most accurate SNES emulation ever seen, with every last
processor running at the lowest possible clock synchronization level.
The performance core allows slower computers the chance to finally use
bsnes. It is capable of attaining 60fps in standard games even on an
entry-level Intel Atom processor, commonly found in netbooks.
The accuracy core is absolutely not meant for casual gaming at all. It
is meant solely for getting as close to 100% perfection as possible, no
matter the cost to speed. It should only be used for testing,
development or debugging.
The compatibility core is identical to bsnes v067 and earlier, but is
now roughly 10% faster. This is the default and recommended core for
casual gaming.
The performance core contains an entirely new S-CPU core, with
range-tested IRQs; and uses blargg's heavily-optimized S-DSP core
directly. Although there are very minor accuracy tradeoffs to increase
speed, I am confident that the performance core is still more accurate
and compatible than any other SNES emulator. The S-CPU, S-SMP, S-DSP,
SuperFX and SA-1 processors are all clock-based, just as in the accuracy
and compatibility cores; and as always, there are zero game-specific
hacks. Its compatibility is still well above 99%, running even the most
challenging games flawlessly.
If you have held off from using bsnes in the past due to its system
requirements, please give the performance core a try. I think you will
be impressed. I'm also not finished: I believe performance can be
increased even further.
I would also strongly suggest Windows Vista and Windows 7 users to take
advantage of the new XAudio2 driver by OV2. Not only does it give you
a performance boost, it also lowers latency and provides better sound by
way of skipping an API emulation layer.
Changelog:
- Split core into three profiles: accuracy, compatibility and
performance
- Accuracy core now takes advantage of variable-bitlength integers (eg
uint24_t)
- Performance core uses a new S-CPU core, written from scratch for speed
- Performance core uses blargg's snes_dsp library for S-DSP emulation
- Binaries are now compiled using GCC 4.5
- Added a workaround in the SA-1 core for a bug in GCC 4.5+
- The clock-based S-PPU renderer has greatly improved OAM emulation;
fixing Winter Gold and Megalomania rendering issues
- Corrected pseudo-hires color math in the clock-based S-PPU renderer;
fixing Super Buster Bros backgrounds
- Fixed a clamping bug in the Cx4 16-bit triangle operation [Jonas
Quinn]; fixing Mega Man X2 "gained weapon" star background effect
- Updated video renderer to properly handle mixed-resolution screens
with interlace enabled; fixing Air Strike Patrol level briefing screen
- Added mightymo's 2010-08-19 cheat code pack
- Windows port: added XAudio2 output support [OV2]
- Source: major code restructuring; virtual base classes for processor
- cores removed, build system heavily modified, etc.