byuu says:
Changelog:
- SNES: started on skeleton of the new parallel PPU core
To build the new PPU core, set profile=fast via GNU make. The old core
is profile=accurate.
The names of the profiles, and the name of the folder for the fast PPU
are subject to change.
The new PPU core doesn't do anything but demonstrate the proof of
concept: every scanline, make a copy of all the PPU registers and CGRAM.
Share the VRAM and OAM. Batch render all scanlines at once using OpenMP
at the end of each frame and blit the result.
With no PPU core at all, bsnes runs 91% faster than with the accuracy
PPU (230fps vs 120fps.) That's the absolute theoretical best-case
scenario. With the skeleton in place, we're already around 220fps. It'll
go down more as the PPU line renderer starts to do real work. I don't
know where things will end up yet. I suppose we'll find out in time.
My own copy of TDM/GCC can't use OpenMP on Windows, so ... it won't
parallelize if you build with that. I'm going to have to switch to a
different MinGW distribution once this is complete, I suppose.
byuu says:
Changelog:
- nall: added -static-libgcc -static-libstdc++ to Windows/GCC link
flags
- bsnes, higan: added program icons to main window when game isn't
loaded
- bsnes: improved recent games menu sorting
- bsnes: fixed multi-game recent game loading on Windows
- bsnes: completed path override support
- bsnes, higan: added screensaver suppression on Windows
- icarus: add 32K volatile RAM to SuperFX boards that report no RAM
(fixes Starfox)
- bsnes, higan: added automatic dependency generation [Talarubi]
- hiro/GTK: appending actions to menus restores enabled() state
- higan: use board node inside manifest.bml if it exists
- bsnes: added blur emulation and color emulation options to view menu
- ruby: upgraded input.sdl to SDL 2.0 (though it makes no functional
difference sadly)
- ruby: removed video.sdl (due to deprecating SDL 1.2)
- nall, ruby: improvements to HID class (generic vendor and product
IDs)
Errata:
- bsnes, higan: on Windows, Application::Windows::onScreenSaver needs
`[&]` lambda capture, not `[]`
- find it in presentation/presentation.cpp
byuu says:
Changelog:
- Super Famicom: fixed loading of BS Memory and Sufami Turbo
cartridges
- Super Famicom: renamed NSS to DIP; as that's really all it is, it's
not true NSS emulation
- Super Famicom: slot loading now happens inside of board parsing
instead of generically in loadCartridge()
- Super Famicom: BS-X cartridges with flash memory now serialize their
data and write it out to disk¹
- icarus: fixed Famicom game importing (hopefully) and set file import
title to “Load ROM File”
¹: there's no emulation of write commands yet, so the data is never
going to change anyway. This is just in preparation for more advanced
emulation of BS Memory cartridges.
byuu says:
Changelog:
- Game Boy: fixed RAM/RTC saving¹
- Super Famicom: ICD2 renamed to ICD (there exists an SGB prototype
with a functionally identical ICD1)
- Sufami Turbo: removed short-circuiting when loading an unlinkable
cartridge into slot A²
- Super Game Boy: the 20971520hz clock of the SGB2 is now emulated
- Super Famicom: BSC-1Lxx (SA1) boards now prompt for BS memory
cartridges; and can make use of them³
- Super Famicom: fixed a potential for out-of-bounds reads with BS
Memory flash carts
¹: I'm using a gross hack of replacing `type: ` with `type:` so that
`memory(type=...)` will match without the extra spaces. I need to
think about whether I want the BPath query syntax to strip whitespace or
not. But longer term, I want to finalize game/memory's design, and build
a higan/emulation/manifest parser that produces a nicer interface to
reading manifests for all cores, which will make this irrelevant for
higan anyway.
²: I don't think it's appropriate for higan to enforce this. Nothing
stops you from inserting games that can't be linked into a real Sufami
Turbo. I do short-circuit if you cancel the first load, but I may allow
loading an empty slot A with a populated slot B. I think the BIOS does
something when you do that. Probably just yells at you.
³: I know it's emulated correctly now, but I still don't know what
the heck changes when you load the SD Gundam G Next - Unit & Map
Collection BS Memory cartridge with SD Gundam G Next to actually test
it.
byuu says:
Changelog:
- processor/arm7tdmi: completed implemented
- gba/cpu, sfc/coprocessor/armdsp: use arm7tdmi instead of arm
- sfc/cpu: experimental fix for newly discovered HDMA emulation issue
Notes:
The ARM7TDMI core crashes pretty quickly when trying to run GBA games,
and I'm certain the same will be the case with the ST018. It was never
all that likely I could rewrite 70KiB of code in 20 hours and have it
work perfectly on the first try. So, now it's time for lots and lots of
debugging. Any help would *really* be appreciated, if anyone were up for
comparing the two implementations for regressions =^-^= I often have a
really hard time spotting simple typos that I make.
Also, the SNES HDMA fix is temporary. I would like it if testers could
run through a bunch of games that are known for being tricky with HDMA
(or if these aren't known to said tester, any games are fine then.) If
we can confirm regressions, then we'll know the fix is either incorrect
or incomplete. But if we don't find any, then it's a good sign that
we're on the right path.
byuu says:
Changelog:
- rewrote the 6502 CPU core from scratch. Now called MOS6502,
supported BCD mode
- Famicom core disables BCD mode via MOS6502::BCD = 0;
- renamed r65816 folder to wdc65816 (still need to rename the actual
class, though ...)
Note: need to remove build rules for the now renamed r6502, r65816
objects from processor/GNUmakefile.
So this'll seem like a small WIP, but it was a solid five hours to
rewrite the entire 6502 core. The reason I wanted to do this was because
the old 6502 core was pretty sloppy. My coding style improved a lot, and
I really liked how the HuC6280 CPU core came out, so I wanted the 6502
core to be like that one.
The core can now support BCD mode, so hopefully that will prove useful
to hex\_usr and allow one core to run both the NES and his Atari 2600
cores at some point.
Note that right now, the core doesn't support any illegal instructions.
The old core supported a small number of them, but were mostly the no
operation ones. The goal is support all of the illegal instructions at
some point.
It's very possible the rewrite introduced some regressions, so thorough
testing of the NES core would be appreciated if anyone were up for it.
byuu says:
Changelog:
- added \~130 new PAL games to icarus (courtesy of Smarthuman
and aquaman)
- added all three Korean-localized games to icarus
- sfc: removed SuperDisc emulation (it was going nowhere)
- sfc: fixed MSU1 regression where the play/repeat flags were not
being cleared on track select
- nall: cryptography support added; will be used to sign future
databases (validation will always be optional)
- minor shims to fix compilation issues due to nall changes
The real magic is that we now have 25-30% of the PAL SNES library in
icarus!
Signing will be tricky. Obviously if I put the public key inside the
higan archive, then all anyone has to do is change that public key for
their own releases. And if you download from my site (which is now over
HTTPS), then you don't need the signing to verify integrity. I may just
put the public key on my site on my site and leave it at that, we'll
see.
byuu says:
Changelog:
- moved Thread, Scheduler, Cheat functionality into emulator/ for
all cores
- start of actual Mega Drive emulation (two 68K instructions)
I'm going to be rather terse on MD emulation, as it's too early for any
meaningful dialogue here.
byuu says:
It took several hours, but I've rebuilt much of the SNES' bus memory
mapping architecture.
The new design unifies the cartridge string-based mapping
("00-3f,80-bf:8000-ffff") and internal bus.map calls. The map() function
now has an accompanying unmap() function, and instead of a fixed 256
callbacks, it'll scan to find the first available slot. unmap() will
free slots up when zero addresses reference a given slot.
The controllers and expansion port are now both entirely dynamic.
Instead of load/unload/power/reset, they only have the constructor
(power/reset/load) and destructor (unload). What this means is you can
now dynamically change even expansion port devices after the system is
loaded.
Note that this is incredibly dangerous and stupid, but ... oh well. The
whole point of this was for 21fx. There's no way to change the expansion
port device prior to loading a game, but if the 21fx isn't active, then
the reset vector hijack won't work. Now you can load a 21fx game, change
the expansion port device, and simply reset the system to active the
device.
The unification of design between controller port devices and expansion
port devices is nice, and overall this results in a reduction of code
(all of the Mapping stuff in Cartridge is gone, replaced with direct bus
mapping.) And there's always the potential to expand this system more in
the future now.
The big missing feature right now is the ability to push/pop mappings.
So if you look at how the 21fx does the reset vector, you might vomit
a little bit. But ... it works.
Also changed exit(0) to _exit(0) in the POSIX version of nall::execute.
[The _exit(0) thing is an attempt to make higan not crash when it tries
to launch icarus and it's not on $PATH. The theory is that higan forks,
then the child tries to exec icarus and fails, so it exits, all the
unique_ptrs clean up their resources and tell the X server to free
things the parent process is still using. Calling _exit() prevents
destructors from running, and seems to prevent the problem. -Ed.]
byuu says:
Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
merged to SFC::Cothread
- Cothread here just means "Thread with CPU affinity" (couldn't think
of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
- this is the beginning of work to allow expansion port devices to be
dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
no frequency is assigned
- note: the WASAPI driver can default to whatever the native frequency
is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
it will display the frequency used)
- tomoko: removed the timing settings panel
- the goal is to work toward smooth video via adaptive sync
- the model is broken by not being in control of the audio frequency
anyway
- it's further broken by PAL running at 50hz and WSC running at 75hz
- it was always broken anyway by SNES interlace timing varying from
progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
(libco, emulator, audio, video)
The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
byuu says:
Changelog:
- WS: fixed sprite window clipping (again)
- WS: don't set IRQ status bits of IRQ enable bits are clear
- SFC: signed/unsigned -> int/uint for DSP core
- SFC: removed eBoot
- SFC: added 21fx (not the same as the old precursor to MSU1; just
reusing the name)
Note: XI Little doesn't seem to be fixed after all ... but the other
three are. So I guess we're at 13 bugs :( And holy shit that music when
you choose a menu option is one of the worst sounds I've ever heard in
my life >_<
byuu says:
Changelog:
- icarus: WS/C detects RAM type/size heuristically now
- icarus: WS/C uses ram type=$type instead of $type
- WS: use back color instead of white for backdrop
- WS: fixed sprite count limit; removes all the garbled sprites from
GunPey
- WS: hopefully fixed sprite priority with screen 2
- WS: implemented keypad polling; GunPey is now fully playable
- SNES: added Super Disc expansion port device (doesn't do anything,
just for testing)
Note: WS is hard-coded to vertical orientation right now. But there's
basic code in there for all the horizontal stuff.
byuu says:
Changelog:
- fixed nall/windows/guard.hpp
- fixed hiro/(windows,gtk)/header.hpp
- fixed Famicom PPU OAM reads (mask the correct bits when writing)
[hex_usr]
- removed the need for (system := system) lines from higan/GNUmakefile
- added "All" option to filetype dropdown for ROM loading
- allows loading GBC games in SGB mode (and technically non-GB(C)
games, which will obviously fail to do anything)
- loki can load and play game folders now (command-line only) (extremely
unimpressive; don't waste your time :P)
- the input is extremely hacked in as a quick placeholder; not sure
how I'm going to do mapping yet for it
byuu says:
Changelog:
- fixed SNES sprite priority regression from r17
- added nall/windows/guard.hpp to guard against global namespace
pollution (similar to nall/xorg/guard.hpp)
- almost fixed Windows compilation (still accuracy profile only, sorry)
- finished porting all of gba/ppu's registers over to the new .bit,.bits
format ... all GBA registers.cpp files gone now
- the "processors :=" line in the target-$(ui)/GNUmakefile is no longer
required
- processors += added to each emulator core
- duplicates are removed using the new nall/GNUmakefile's $(unique)
function
- SFC core can be compiled without the GB core now
- "-DSFC_SUPERGAMEBOY" is required to build in SGB support now (it's
set in target-tomoko/GNUmakefile)
- started once again on loki (higan/target-loki/) [as before, loki is
Linux/BSD only on account of needing hiro::Console]
loki shouldn't be too horrendous ... I hope. I just have the base
skeleton ready for now. But the code from v094r08 should be mostly
copyable over to it. It's just that it's about 50KiB of incredibly
tricky code that has to be just perfect, so it's not going to be quick.
But at least with the skeleton, it'll be a lot easier to pick away at it
as I want.
Windows compilation fix: move hiro/windows/header.hpp line 18 (header
guard) to line 16 instead.
byuu says:
I refactored my schedulers. Added about ten lines to each scheduler, and
removed about 100 lines of calling into internal state in the scheduler
for the FC,SFC cores and about 30-40 lines for the other cores. All of
its state is now private.
Also reworked all of the entry points to static auto Enter() and auto
main(). Where Enter() handles all the synchronization stuff, and main()
doesn't need the while(true); loop forcing another layer of indentation
everywhere.
Took a few hours to do, but totally worth it. I'm surprised I didn't do
this sooner.
Also updated icarus gmake install rule to copy over the database.
byuu says:
Changelog:
- restructured the project and removed a whole bunch of old/dead
directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
region=(ntsc,pal) ... the former was too obtuse
If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.
It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.