Commit Graph

7 Commits

Author SHA1 Message Date
Tim Allen ee7662a8be Update to v102r04 release.
byuu says:

Changelog:
  - Super Game Boy support is functional once again
  - new GameBoy::SuperGameBoyInterface class
  - system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
    Engine
  - merged WonderSwanInterface, WonderSwanColorInterface shared
    functions to WonderSwan::Interface
  - merged GameBoyInterface, GameBoyColorInterface shared functions to
    GameBoy::Interface
  - Interface::unload() now calls Interface::save() for Master System,
    Game Gear, Mega Drive, PC Engine, SuperGrafx
  - PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
    file)
      - this means you can now save your progress in games like Neutopia
      - the PCE-CD I/O registers like BRAM write protect are not
        emulated yet
  - PCE: IRQ sources now hold the IRQ line state, instead of the CPU
    holding it
      - this fixes most SuperGrafx games, which were fighting over the
        VDC IRQ line previously
  - PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
    are disabled
  - PCE: VCE and the VDCs now synchronize to each other; fixes pixel
    widths in all games
  - PCE: greatly increased the accuracy of the VPC priority selection
    code (windows may be buggy still)
  - HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
    [Jonas Quinn]

The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.

In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.

We are going to have to profile and optimize this code once sound
emulation and save states are in.

Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.

-----

Oh, just a fair warning ... the hooks for the SGB are a work in
progress.

If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.

Right now, higan looks like this:

  - Emulator::Video handles the platform→videoRefresh calls
  - Emulator::Audio handles the platform→audioSample calls
  - each core hard-codes the platform→inputPoll, inputRumble calls
  - each core hard-codes calls to path, open, load to process files
  - dipSettings and notify are specialty hacks, neither are even hooked
    up right now to anything

With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.

The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.

dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.

The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.

However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.

And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.

But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.

I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 12:06:06 +11:00
Tim Allen 7a68059f78 Update to v099r12 release.
byuu says:

Changelog:
- fixed FC AxROM / VRC7 regression
- BitField split to BooleanBitField/NaturalBitField (in preparation
  for IntegerBitField)
- BitFieldReference removed
- GB CPU cleaned up
- GB Cartridge + Mappers cleaned up
- SFC CGRAM is now emulated as uint15[256] instead of uint[512]
- sfc/ppu/memory.cpp no longer needed; removed
- purged SFC Debugger hooks for now (some of the operator[] calls were
  bypassing them anyway)

Unfortunately, for reasons that defy all semblance of logic, the CGRAM
change caused a slight speed hit. As have the last few changes. We're
now down to around 129.5fps compared to 123.fps for v099 and 134.5fps
at our peak (v099r01-r02).

I really like the style I came up with for the Game Boy mappers to settle
the purpose(ROM,RAM) vs (rom,ram)Purpose naming convention. If I ever get
around to redoing the NES mappers, that's likely the approach I'll take.
2016-06-28 20:43:47 +10:00
Tim Allen 3a9c7c6843 Update to v099r09 release.
byuu says:

Changelog:
- Emulator::Interface::Medium::bootable removed
- Emulator::Interface::load(bool required) argument removed
  [File::Required makes no sense on a folder]
- Super Famicom.sys now has user-configurable properties (CPU,PPU1,PPU2
  version; PPU1 VRAM size, Region override)
- old nall/property removed completely
- volatile flags supported on coprocessor RAM files now (still not in
  icarus, though)
- (hopefully) fixed SNES Multitap support (needs testing)
- fixed an OAM tiledata range clipping limit in 128KiB VRAM mode (doesn't
  fix Yoshi's Island, sadly)
- (hopefully, again) fixed the input polling bug hex_usr reported
- re-added dialog box for when File::Required files are missing
  - really cool: if you're missing a boot ROM, BIOS ROM, or IPL ROM,
    it warns you immediately
  - you don't have to select a game before seeing the error message
    anymore
- fixed cheats.bml load/save location
2016-06-25 18:53:11 +10:00
Tim Allen f48b332c83 Update to v099r08 release.
byuu says:

Changelog:
- nall/vfs work 100% completed; even SGB games load now
- emulation cores now call load() for the base cartridges as well
- updated port/device handling; portmask is gone; device ID bug should
  be resolved now
- SNES controller port 1 multitap option was removed
- added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp
  VRAM::size=0x10000; to enable)

Overall, nall/vfs was a huge success!! We've substantially reduced
the amount of boilerplate code everywhere, while still allowing (even
easier than before) support for RAM-based game loading/saving. All of
nall/stream is dead and buried.

I am considering removing Emulator::Interface::Medium::id and/or
bootable flag. Or at least, doing something different with it. The
values for the non-bootable GB/BS/ST entries duplicate the ID that is
supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use
this as the hardware revision selection ID, and then gut non-bootable
options. There's really no reason for that to be there. I think at one
point I was using it to generate library tabs for non-bootable systems,
but we don't do that anymore anyway.

Emulator::Interface::load() may not need the required flag anymore ... it
doesn't really do anything right now anyway.

I have a few reasons for having the cores load the base cartridge. Most
importantly, it is going to enable a special mode for the WonderSwan /
WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's
possible to boot these systems with no games inserted to set user profile
information and such. There are also other systems that may accept being
booted without a cartridge. To reach this state, you would load a game and
then cancel the load dialog. Right now, this results in games not loading.

The second reason is this prevents nasty crashes when loading fails. So
if you're missing a required manifest, the emulator won't die a violent
death anymore. It's able to back out at any point.

The third reason is consistency: loading the base cartridge works the
same as the slot cartridges.

The fourth reason is Emulator::Interface::open(uint pathID)
values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This
complicated things because you had to pass the correct ID. But now
instead, Emulator::Interface::load() returns maybe<uint> that is nothing
when no game is selected, and a pathID for a valid game. And now open()
can take this ID to access this game's folder contents.

The downside, which is temporary, is that command-line loading is
currently broken. But I do intend on restoring it. In fact, I want to do
better than before and allow multi-cart booting from the command-line by
specifying the base cartridge and then slot cartridges. The idea should
be pretty simple: keep a queue of pending filenames that we fill from
the command-line and/or drag-and-drop operations on the main window,
and then empty out the queue or prompt for load dialogs from the UI
when booting a system. This also might be a bit more unorthodox compared
to the traditional emulator design of "loadGame(filename)", but ... oh
well. It's easy enough still.

The port/device changes are fun. We simplified things quite a bit. The
portmask stuff is gone entirely. While ports and devices keep IDs,
this is really just sugar-coating so UIs can use for(auto& port :
emulator->ports) and access port.id; rather than having to use for(auto
n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... };
but they should otherwise generally be identical to the order they appear
in their respective ranges. Still, don't rely on that.

Input::id is gone. There was no point since we also got rid of the nasty
Input::order vector. Since I was in here, I went ahead and caved on the
pedantics and renamed Input::guid to Input::userData.

I removed the SNES controller port 1 multitap option. Basically, the only
game that uses this is N-warp Daisakusen and, no offense to d4s, it's
not really a good game anyway. It's just a quick demo to show 8-players
on the SNES. But in the UI, all it does is confuse people into wasting
time mapping a controller they're never going to use, and they're going
to wonder which port to use. If more compelling use cases for 8-players
comes about, we can reconsider this. I left all the code to support this
in place, so all you have to do is uncomment one line to enable it again.

We now have dsnes emulation! :D
If you change PPU::VRAM::size to 0x10000 (words), then you should now
have 128KiB of VRAM. Even better, it serializes the used-VRAM size,
so your save states shouldn't crash on you if you swap between the two
(though if you try this, you're nuts.)

Note that this option does break commercial software. Yoshi's Island in
particular. This game is setting A15 on some PPU register writes, but
not on others. The end result of this is things break horribly in-game.

Also, this option is causing a very tiny speed hit for obvious reasons
with the variable masking value (I'm even using size-1 for now.) Given
how niche this is, I may just leave it a compile-time constant to avoid
the overhead cost. Otherwise, if we keep the option, then it'll go into
Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future.

----

Finally, some fun for my OCD ... my monitor suddenly cut out on me
in the middle of working on this WIP, about six hours in of non-stop
work. Had to hit a bunch of ctrl+alt+fN commands (among other things)
and trying to log in headless on another TTY to do issue commands,
trying to recover the display. Finally power cycled the monitor and it
came back up. So all my typing ended up going to who knows where.

Usually this sort of thing terrifies me enough that I scrap a WIP and
start over to ensure I didn't screw anything up during the crashed screen
when hitting keys randomly.

Obviously, everything compiles and appears to work fine. And I know
it's extremely paranoid, but OCD isn't logical, so ... I'm going
to go over every line of the 100KiB r07->r08 diff looking for any
corruption/errors/whatever.

----

Review finished.

r08 diff review notes:
- fc/controller/gamepad/gamepad.cpp:
  use uint device = ID::Device::Gamepad; not id = ...;
- gb/cartridge/cartridge.hpp:
  remove redundant uint _pathID; (in Information::pathID already)
- gb/cartridge/cartridge.hpp:
  pull sha256 inside Information
- sfc/cartridge/load/cpp:
  add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more
  descriptive
- sfc/controller/gamepad/gamepad.cpp:
  use uint device = ID::Device::Gamepad; not id = ...;
- sfc/interface/interface.cpp:
  remove n variable from the Multitap device input generation loop
  (now unused)
- sfc/interface/interface.hpp:
  put struct Port above struct Device like the other classes
- ui-tomoko:
  cheats.bml is reading from/writing to mediumPaths(0) [system folder
  instead of game folder]
- ui-tomoko:
  instead of mediumPaths(1) - call emulator->metadataPathID() or something
  like that
2016-06-24 22:16:53 +10:00
Tim Allen ccd8878d75 Update to v099r07 release.
byuu says:

Changelog:
- (hopefully) fixed BS Memory and Sufami Turbo slot loading
- ported GB, GBA, WS cores to use nall/vfs
- completely removed loadRequest, saveRequest functionality from
  Emulator::Interface and ui-tomoko
  - loadRequest(folder) is now load(folder)
- save states now use a shared Emulator::SerializerVersion string
  - whenever this is bumped, all older states will break; but this makes
    bumping state versions way easier
  - also, the version string makes it a lot easier to identify
    compatibility windows for save states
- SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr]

NOTE: Super Game Boy loading is currently broken, and I'm not entirely
sure how to fix it :/
The file loading handoff was -really- complicated, and so I'm kind of
at a loss ... so for now, don't try it.
Everything else should theoretically work, so please report any bugs
you find.

So, this is pretty much it. I'd be very curious to hear feedback from
people who objected to the old nall/stream design, whether they are
happy with the new file loading system or think it could use further
improvements.

The 16-bit VRAM turned out to be a wash on performance (roughly the same
as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The
main reason for this was because Yoshi's Island was breaking horribly
until I changed the vramRead, vramWrite functions to take uint15 instead
of uint16.

I suspect the issue is we're using uint16s in some areas now that need
to be uint15, and this game is setting the VRAM address to 0x8000+,
causing us to go out of bounds on memory accesses.

But ... I want to go ahead and do something cute for fun, and just because
we can ... and this new interface is so incredibly perfect for it!! I
want to support an SNES unit with 128KiB of VRAM. Not out of the box,
but as a fun little tweakable thing. The SNES was clearly designed to
support that, they just didn't use big enough VRAM chips, and left one
of the lines disconnected. So ... let's connect it anyway!

In the end, if we design it right, the only code difference should be
one area where we mask by 15-bits instead of by 16-bits.
2016-06-24 22:09:30 +10:00
Tim Allen 44a8c5a2b4 Update to v099r03 release.
byuu says:

Changelog:
- finished cleaning up the SFC core to my new coding conventions
- removed sfc/controller/usart (superseded by 21fx)
- hid Synchronize Video option from the menu (still in the configuration
  file)

Pretty much the only minor detail left is some variable names in the
SA-1 core that really won't look good at all if I move to camelCase,
so I'll have to rethink how I handle those. It's probably a good area
to attempt using BitFields, to see how it impacts performance. But I'll
do that in a test branch first.

But for the most part, this should be the end of the gigantic diffs (this
one was 174KiB), at least for the SFC/WS cores. Still have the FC/GB/GBA
cores to clean up more fully. Assuming we don't spot any new regressions,
we should be ~95% out of the woods on code cleanups breaking things.
2016-06-17 23:03:54 +10:00
Tim Allen 3681961ca5 Update to v098r16 release.
byuu says:

Changelog:
- GNUmakefile: reverted $(call unique,) to $(strip)
- processor/r6502: removed templates; reduces object size from 146.5kb
  to 107.6kb
- processor/lr35902: removed templates; reduces object size from 386.2kb
  to 197.4kb
- processor/spc700: merged op macros for switch table declarations
- sfc/coprocessor/sa1: partial cleanups; flattened directory structure
- sfc/coprocessor/superfx: partial cleanups; flattened directory structure
- sfc/coprocessor/icd2: flattened directory structure
- gb/ppu: changed behavior of STAT IRQs

Major caveat! The GB/GBC STAT IRQ changes has a major bug in it somewhere
that's seriously breaking most games. I'm pushing the WIP anyway, because
I believe the changes to be mostly correct. I'd like to get more people
looking at these changes, and also try more heavy-handed hacking and
diff comparison logging between the previous WIP and this one.
2016-06-05 15:03:21 +10:00