byuu says:
Changelog:
- sfc: completed BS Memory Cassette emulation (sans bugs, of course --
testing appreciated)
- bsnes: don't strip - on MSU1 track names in game ROM mode
[hex_usr]
I'm going with "metadata.bml" for the flash metadata filename for the
time being, but I'll say that it's subject to change. I'll have to make
a new extension for it to be supported with bsnes.
byuu says:
Changelog:
- gb/mbc7: rewrote the 93LCx6 EEPROM emulation
- sfc/slot/bsmemory: rewrote the flash emulation for Satellaview
cartridges
As of this release, flash-based BS Memory cartridges will be writable.
So without the bsnes patch to disable write limits, some games will lock
out after a few plays.
byuu says:
This release adds ikari's Cx4 notes to bsnes. It fixes the MMX2 intro's
boss fight sequence to be frame perfect to real hardware. It's also very
slightly faster than before.
I've also added an option to toggle the CPU↔coprocessor cycle
synchronization to the emulation settings panel, so you don't have to
recompile to get the more accurate SA1 timings. I'm most likely going to
default this to disabled in bsnes, and *maybe* enabled in higan out of
the box.
StaticRAM (wasn't used) and MappedRAM are gone from the Super Famicom
core. Instead, there's now ReadableMemory, WritableMemory, and
ProtectedMemory (WritableMemory with a toggle for write protection.)
Cartridge::loadMap now takes a template Memory object, which bypasses an
extra virtual function call on memory accesses, but it doesn't really
impact speed much. Whatever.
byuu says:
Changelog:
- created new bsnes target (it currently does nothing)
- Super Famicom: fixed BS Memory pack support in the MCC emulation
- icarus: fixed manifest-free support for BS Memory flash-based
cartridges
- icarus: database improvements
byuu says:
Changelog:
- higan: target-tomoko has been renamed to target-higan
- Super Famicom: event has been renamed to
processor(architecture=uPD78214)
- Super Famicom: SNES-EVENT supported once more; under board IDs
EVENT-CC92 and EVENT-PF94
- Super Famicom: SNES-EVENT preliminarily set up to use DIP switch
settings ala the Nintendo Super System (incomplete)
- Super Famicom: MCC PSRAM moved inside the MCU, as it is remappable
- Super Famicom: MCC emulation rewritten from scratch; it is now
vastly more accurate than before
- Super Famicom: added BSC-1A5B9P-01 board definition to database;
corrected BS-MCC-RAM board definition
- Super Famicom: moved SHVC-LN3B-01 RAM outside of
processor(identifier=SDD1)
- higan: when selecting a default game to load for a new system entry,
it will change the system option to match the media type
- higan: the load text box on the system entry window is now editable;
can be used to erase entries
- icarus: fixed bug in Famicom importing
- icarus: importing unappended SNES coprocessor firmware will now
rename the firmware properly
- hiro/GTK,Qt: WM_CLASS is now set correctly in `argv[0]`, so
applications should show “higan”, “icarus” instead of “hiro” now
Note: if you wish to run the BS-X town cartridge, the database currently
lists the download RAM as type “PSRAM”. This needs to be changed to
“RAM” in order to load properly. Otherwise, the emulator will bomb
out on the load window, because BSC-1A5B9P-01 expects PSRAM to always be
present, but it won't find it with the wrong memory type. I'll correct
this in the database in a later release. For now, you can copy the game
portion of the manifest to a new manifest.bml file and drop it into the
gamepak folder until I fix the database.
byuu says:
Changelog:
- Super Famicom: update to newer board markup syntax
- Super Famicom: update all mapped ROMs to be write-protected
- errata: SPC7110 set ram.writeProtect(true), I'll fix it in the
next WIP
- icarus: rewrote the Super Famicom heuristics module from scratch
Instead of icarus heuristics generating higan-specific mappings, it now
generates generic board IDs that can be used by any emulator. I had
originally planned to print out real PCB ID codes here, but these board
mappings are meant to be more generic, and I don't want them to look
real. The pseudo-codes are easy to parse, for example: `DSP-LOROM-NVRAM`
for Super Mario Kart, `SUPERFX-RAM` for Doom.
I'm going to make a `Boards (Generic).bml` file that will contain mapping
definitions for every board. Until this is done, any games not in the SNES
preservation database will fail to play because the mapping information is
now missing.
byuu says:
Changelog:
- higan: readded support for soft-reset to Famicom, Super Famicom,
Mega Drive cores (work in progress)
- handhelds lack soft reset obviously
- the PC Engine also lacks a physical reset button
- the Master System's reset button acts like a gamepad button, so
can't show up in the menu
- Mega Drive: power cycle wasn't initializing CPU (M68K) or APU (Z80)
RAM
- Super Famicom: fix SPC700 opcode 0x3b regression; fixes Majuu Ou
[Jonas Quinn]
- Super Famicom: fix SharpRTC save regression; fixes Dai Kaijuu
Monogatari II's real-time clock [Talarubi]
- Super Famicom: fix EpsonRTC save regression; fixes Tengai Makyou
Zero's real-time clock [Talarubi]
- Super Famicom: removed `*::init()` functions, as they were never used
- Super Famicom: removed all but two `*::load()` functions, as they
were not used
- higan: added option to auto-save backup RAM every five seconds
(enabled by default)
- this is in case the emulator crashes, or there's a power outage;
turn it off under advanced settings if you want
- libco: updated license from public domain to ISC, for consistency
with nall, ruby, hiro
- nall: Linux compiler defaults to g++; override with g++-version if
g++ is <= 4.8
- FreeBSD compiler default is going to remain g++49 until my dev
box OS ships with g++ >= 4.9
Errata: I have weird RAM initialization constants, thanks to hex_usr
and onethirdxcubed for both finding this:
http://wiki.nesdev.com/w/index.php?title=CPU_power_up_state&diff=11711&oldid=11184
I'll remove this in the next WIP.
byuu says:
Changelog:
- I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it
- if it's really invalid C++, then GCC needs to stop accepting it
in strict `-std=c++14` mode
- Emulator::Interface::Information::resettable is gone
- Emulator::Interface::reset() is gone
- FC, SFC, MD cores updated to remove soft reset behavior
- split GameBoy::Interface into GameBoyInterface,
GameBoyColorInterface
- split WonderSwan::Interface into WonderSwanInterface,
WonderSwanColorInterface
- PCE: fixed off-by-one scanline error [hex_usr]
- PCE: temporary hack to prevent crashing when VDS is set to < 2
- hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#)
types to (u)int_(#)t types
- icarus: replaced usage of unique with strip instead (so we don't
mess up frameworks on macOS)
- libco: added macOS-specific section marker [Ryphecha]
So ... the major news this time is the removal of the soft reset
behavior. This is a major!! change that results in a 100KiB diff file,
and it's very prone to accidental mistakes!! If anyone is up for
testing, or even better -- looking over the code changes between v102r01
and v102r02 and looking for any issues, please do so. Ideally we'll want
to test every NES mapper type and every SNES coprocessor type by loading
said games and power cycling to make sure the games are all cleanly
resetting. It's too big of a change for me to cover there not being any
issues on my own, but this is truly critical code, so yeah ... please
help if you can.
We technically lose a bit of hardware documentation here. The soft reset
events do all kinds of interesting things in all kinds of different
chips -- or at least they do on the SNES. This is obviously not ideal.
But in the process of removing these portions of code, I found a few
mistakes I had made previously. It simplifies resetting the system state
a lot when not trying to have all the power() functions call the reset()
functions to share partial functionality.
In the future, the goal will be to come up with a way to add back in the
soft reset behavior via keyboard binding as with the Master System core.
What's going to have to happen is that the key binding will have to send
a "reset pulse" to every emulated chip, and those chips are going to
have to act independently to power() instead of reusing functionality.
We'll get there eventually, but there's many things of vastly greater
importance to work on right now, so it'll be a while. The information
isn't lost ... we'll just have to pull it out of v102 when we are ready.
Note that I left the SNES reset vector simulation code in, even though
it's not possible to trigger, for the time being.
Also ... the Super Game Boy core is still disconnected. To be honest, it
totally slipped my mind when I released v102 that it wasn't connected
again yet. This one's going to be pretty tricky to be honest. I'm
thinking about making a third GameBoy::Interface class just for SGB, and
coming up with some way of bypassing platform-> calls when in this
mode.
byuu says:
Changelog:
- emulation cores now refresh video from host thread instead of
cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
- it is now possible to have more than two audio streams: eg SNES
+ SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it
I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.
Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/
I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
byuu says:
Changelog:
- higan now uses Natural<Size>/Integer<Size> for its internal types
- Super Famicom emulation now uses uint24 instead of uint for bus
addresses (it's a 24-bit bus)
- cleaned up gb/apu MMIO writes
- cleaned up sfc/coprocessor/msu1 MMIO writes
- ~3% speed penalty
I've wanted to do that 24-bit bus thing for so long, but have always
been afraid of the speed impact. It's probably going to hurt
balanced/performance once they compile again, but it wasn't significant
enough to harm the accuracy core's frame rate, thankfully. Only lost one
frame per second.
The GBA core handlers are clearly going to take a lot more work. The
bit-ranges will make it substantially easier to handle, though. Lots of
32-bit registers where certain values span multiple bytes, but we have
to be able to read/write at byte-granularity.
byuu says:
Changelog:
- restructured the project and removed a whole bunch of old/dead
directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
region=(ntsc,pal) ... the former was too obtuse
If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.
It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.