byuu says:
Changelog:
- added NSS DIP switch settings window (when loading NSS carts with
appropriate manifest.xml file)
- added video shader selection (they go in ~/.config/bsnes/Video
Shaders/ now)
- added driver selection
- added timing settings (not only allows video/audio settings, also has
code to dynamically compute the values for you ... and it actually
works pretty good!)
- moved "None" controller device to bottom of list (it is the least
likely to be used, after all)
- added Interface::path() to support MSU1, USART, Link
- input and hotkey mappings remember list position after assignment
- and more!
target-ethos now has all of the functionality of target-ui, and more.
Final code size for the port is 101.2KB (ethos) vs 167.6KB (ui).
A ~67% reduction in code size, yet it does even more! And you can add or
remove an entire system with only three lines of code (Makefile include,
header include, interface append.)
The only problem left is that the BS-X BIOS won't load the BS Zelda no
Densetsu file.
I can't figure out why it's not working, would appreciate any
assistance, but otherwise I'm probably just going to leave it broken for
v089, sorry.
So the show stoppers for a new release at this point are:
- fix laevateinn to compile with the new interface changes (shouldn't be
too hard, it'll still use the old, direct interface.)
- clean up Emulator::Interface as much as possible (trim down
Information, mediaRequest should use an alternate struct designed to
load firmware / slots separately)
- enhance purify to strip SNES ROM headers, and it really needs a GUI
interface
- it would be highly desirable to make a launcher that can create
a cartridge folder from an existing ROM set (* ethos will need to
accept command-line arguments for this.)
- probably need to remember which controller was selected in each port
for each system across runs
- need to fix the cursor for Super Scope / Justifier games (move from
19-bit to 32-bit colors broke it)
- have to refactor that cache.(hv)offset thing to fix ASP
byuu says:
ethos is going to be absolutely amazing. You guys are in for a treat :D
I'm impressing the hell out of myself with how well-structured this code
is, it's allowing me to do amazing new things.
Just a small sampling of what's in store (and already implemented):
The file browser will display folders as "[ folder name ]", and
cartridge folders as "Game Name" (no extension, no /) [icons would be
nicer, but well ... phoenix.]
Folders are sorted above cartridge folders.
Cartridge folders for other systems do not show up in the list.
Not only are unique paths stored for each image type, your position in
the list is saved across runs.
Some voodoo was added to GTK+ so that all targets even scroll directly
to that item when you open the list. Load->System->Enter restarts your
last game.
That sounds really simple and obvious, but it makes an -incredible-
difference. Didn't realize it until I tried an implementation of it,
wow.
The input mapping list now lets you bind as many hotkeys as you want to
any given input.
So SFC::Port1::Joypad::B = Keyboard::Z or Joypad::Button1 ... no need to
remap everything to switch between keyboard and joypad. Either one
activates the key.
There is a separate Hotkeys tab now. This should hopefully end the
confusion about how to remap hotkeys that users experience.
Hotkeys are different, too. Instead of OR logic, they use AND logic.
So Fullscreen = Keyboard::Alt and Keyboard::Enter. Both must be pressed
to enter the key. This lets you easily implement "super" modifier keys.
The actual codebase has new features the old UI never had, and has about
~50% of the old functionality (so far, of course), yet is only ~25% as
much code.
The entire GUI no longer needs to pull in all the headers for each
emulated system. It just needs a small interface header file.
Then bind the entire system with exactly **two** lines of code.
Everything is dynamically generated for you after that.
byuu says:
static vector<uint8_t> file::read(const string &filename); replaces:
static bool file::read(const string &filename, uint8_t *&data, unsigned
&size); This allows automatic deletion of the underlying data.
Added vectorstream, which is obviously a vector<uint8_t> wrapper for
a data stream. Plan is for all data accesses inside my emulation cores
to take stream objects, especially MSU1. This lets you feed the core
anything: memorystream, filestream, zipstream, gzipstream, httpstream,
etc. There will still be exceptions for link and serial, those need
actual library files on disk. But those aren't official hardware devices
anyway.
So to help with speed a bit, I'm rethinking the video rendering path.
Previous system:
- core outputs system-native samples (SNES = 19-bit LRGB, NES = 9-bit
emphasis+palette, DMG = 2-bit grayscale, etc.)
- interfaceSystem transforms samples to 30-bit via lookup table inside
the emulation core
- interfaceSystem masks off overscan areas, if enabled
- interfaceUI runs filter to produce new target buffer, if enabled
- interfaceUI transforms 30-bit video to native display depth (24-bit or
30-bit), and applies color-adjustments (gamma, etc) at the same time
New system:
- all cores now generate an internal palette, and call
Interface::videoColor(uint32_t source, uint16_t red, uint16_t green,
uint16_t blue) to get native display color post-adjusted (gamma, etc
applied already.)
- all cores output to uint32_t* buffer now (output video.palette[color]
instead of just color)
- interfaceUI runs filter to produce new target buffer, if enabled
- interfaceUI memcpy()'s buffer to the video card
videoColor() is pretty neat. source is the raw pixel (as per the
old-format, 19-bit SNES, 9-bit NES, etc), and you can create a color
from that if you really want to. Or return that value to get a buffer
just like v088 and below. red, green, blue are 16-bits per channel,
because why the hell not, right? Just lop off all the bits you don't
want. If you have more bits on your display than that, fuck you :P
The last step is extremely difficult to avoid. Video cards can and do
have pitches that differ from the width of the texture. Trying to make
the core account for this would be really awful. And even if we did
that, the emulation routine would need to write directly to a video card
RAM buffer. Some APIs require you to lock the video buffer while
writing, so this would leave the video buffer locked for a long time.
Probably not catastrophic, but still awful. And lastly, if the
emulation core tried writing directly to the display texture, software
filters would no longer be possible (unless you -really- jump through
hooks and divert to a memory buffer when a filter is enabled, but ...
fuck.)
Anyway, the point of all that work was to eliminate an extra video copy,
and the need for a really painful 30-bit to 24-bit conversion (three
shifts, three masks, three array indexes.) So this basically reverts us,
performance-wise, to where we were pre-30 bit support.
[...]
The downside to this is that we're going to need a filter for each
output depth. Since the array type is uint32_t*, and I don't intend to
support higher or lower depths, we really only need 24+30-bit versions
of each filter. Kinda shitty, but oh well.
byuu says:
Changelog:
- updated bsnes to use the newest versions of nall and phoenix
- fixed ui-libsnes compilation (testing would be a good idea, especially
the cheat codes. I just copy-pasted that from the regular UI.)
- fixed multitap controllers 2-4 [quequotion]
byuu says:
Adds BS-X/Slotted/SufamiTurbo/SGB cartridge loading. Calling it
Satellaview as I'm more partial to that at the moment.
FileBrowser now remembers your folders per filter type like before, and
will keep your place in the list if you don't switch away.
I wanted there to be ONE slot loader, so the loader will show a grayed
out secondary slot on non-ST loading, but it's more consistent to only
have one window instead of two for geometry placement.
Removed help menu. Will try and work it in somewhere unobtrusive later
on I suppose.
Added timed messages and the usual "no cart loaded / paused" messages
and such.
byuu says:
This release adds nall/dsp, which is a new framework for audio DSP
effects. It currently supports the usual fractional hermite resampling
and volume adjustments from ruby; but it also adds balance, and
arbitrary precision input and output (still limited to two channels, and
still signed audio [just subtract 1<<(bits-1) from an unsigned value.])
Internally, all samples are converted to doubles in the range of -1.0 to
+1.0, to allow for far greater precision with the hermite resampler and
volume/balance/etc adjustments.
As a result of this, all of the extra resampling/volume code from
ruby::audio has been removed. bsnes pulls in a copy of nall::dsp to
handle that stuff now.
byuu says:
Includes updated versions of nall and phoenix, which mostly improves the
GTK+ version. However, it appears to be crashing at the moment after
loading a game. Unfortunately it works when gdb is used, so I can't
easily debug it :/
You can now build with make phoenix=gtk if you want the GTK+ version on
Linux (the Qt version is leagues better even on Gnome, please use it if
at all possible.)
There's also settings.startFullScreen, config-file only, to allow for
front-end use. Forgot to add the reset/power hotkeys.
I also fixed compilation of ui-gameboy on GCC 4.6. I hope that's the
last switch(enum) error, those are damn annoying. Can't wait to switch
to GCC 4.6 on Windows.
byuu says:
Wow, nothing in 19 days. Anyway, I wanted to get Nick's logo back in on
the about screen. Adds 80kb to both the binary and source archive, but
eh. Gotta have some style. Nothing else new.
byuu says:
This release includes Nintendo Super System DIP switch emulation and
improved PPU rendering accuracy, among other things.
Changelog:
- added Nintendo Super System DIP switch emulation [requires XML setting
maps]
- emulated Super Game Boy $6001 VRAM offset selection port [ikari_01]
- fixed randomness initialization of S-SMP port registers [fixes
DBZ:Hyper Dimension and Ninja Warriors]
- mosaic V-countdown caches BGOFS registers (fixes Super Turrican
2 effect) [reported by zal16]
- non-mosaic BGOFS registers are always cached at H=60 (fixes NHL '94
and Super Mario World flickering)
- fixed 2xSaI family of renderers on 64-bit systems
- cleaned up SMP source code
- phoenix: fixed a bug when closing bsnes while minimized
Please note that the mosaic BGOFS fix is only for the accuracy profile.
Unfortunately the older scanline-based compatibility renderer's code is
nearly unmaintainable at this point, so I haven't yet been able to
backport the fixes.
Also, I have written a new cycle-accurate SMP core that does not use
libco. The aim is to implement it into Snes9X v1.54. But it would of
course be prudent to test the new core first.
[...then in the next post...]
Decided to keep that Super Mario World part a surprise, so ... surprise!
Realized while working on the Super Turrican 2 mosaic fix, and from
looking at NHL '94 and Dai Kaijuu Monogatari 2's behavior, that BGOFS
registers must be cached between H=0 and H=88 for the entire scanline
... they can't work otherwise, and it'd be stupid for the PPU to re-add
the offset to the position on every pixel anyway. I chose H=60 for now.
Once I am set up with the RGB monitor and the North American cartridge
dumping is completed, I'll set it on getting exact timings for all these
things. It'll probably require a smallish speed hit to allow exact-cycle
timing events for everything in the PPU.
(there was no r15 release posted to the WIP thread)
byuu says:
This mostly contains improvements for nall, like path unification.
This should fix FitzRoy's issue with .. on Windows.
byuu describes the changes since v067:
This release officially introduces the accuracy and performance cores,
alongside the previously-existing compatibility core. The accuracy core
allows the most accurate SNES emulation ever seen, with every last
processor running at the lowest possible clock synchronization level.
The performance core allows slower computers the chance to finally use
bsnes. It is capable of attaining 60fps in standard games even on an
entry-level Intel Atom processor, commonly found in netbooks.
The accuracy core is absolutely not meant for casual gaming at all. It
is meant solely for getting as close to 100% perfection as possible, no
matter the cost to speed. It should only be used for testing,
development or debugging.
The compatibility core is identical to bsnes v067 and earlier, but is
now roughly 10% faster. This is the default and recommended core for
casual gaming.
The performance core contains an entirely new S-CPU core, with
range-tested IRQs; and uses blargg's heavily-optimized S-DSP core
directly. Although there are very minor accuracy tradeoffs to increase
speed, I am confident that the performance core is still more accurate
and compatible than any other SNES emulator. The S-CPU, S-SMP, S-DSP,
SuperFX and SA-1 processors are all clock-based, just as in the accuracy
and compatibility cores; and as always, there are zero game-specific
hacks. Its compatibility is still well above 99%, running even the most
challenging games flawlessly.
If you have held off from using bsnes in the past due to its system
requirements, please give the performance core a try. I think you will
be impressed. I'm also not finished: I believe performance can be
increased even further.
I would also strongly suggest Windows Vista and Windows 7 users to take
advantage of the new XAudio2 driver by OV2. Not only does it give you
a performance boost, it also lowers latency and provides better sound by
way of skipping an API emulation layer.
Changelog:
- Split core into three profiles: accuracy, compatibility and
performance
- Accuracy core now takes advantage of variable-bitlength integers (eg
uint24_t)
- Performance core uses a new S-CPU core, written from scratch for speed
- Performance core uses blargg's snes_dsp library for S-DSP emulation
- Binaries are now compiled using GCC 4.5
- Added a workaround in the SA-1 core for a bug in GCC 4.5+
- The clock-based S-PPU renderer has greatly improved OAM emulation;
fixing Winter Gold and Megalomania rendering issues
- Corrected pseudo-hires color math in the clock-based S-PPU renderer;
fixing Super Buster Bros backgrounds
- Fixed a clamping bug in the Cx4 16-bit triangle operation [Jonas
Quinn]; fixing Mega Man X2 "gained weapon" star background effect
- Updated video renderer to properly handle mixed-resolution screens
with interlace enabled; fixing Air Strike Patrol level briefing screen
- Added mightymo's 2010-08-19 cheat code pack
- Windows port: added XAudio2 output support [OV2]
- Source: major code restructuring; virtual base classes for processor
- cores removed, build system heavily modified, etc.