byuu says:
Changelog:
- improved attenuation of biquad filter by computing butterworth Q
coefficients correctly (instead of using the same constant)
- adding 1e-25 to each input sample into the biquad filters to try and
prevent denormalization
- updated normalization from [0.0 to 1.0] to [-1.0 to +1.0]; volume/reverb
happen in floating-point mode now
- good amount of work to make the base Emulator::Audio support any number
of output channels
- so that we don't have to do separate work on left/right channels;
and can instead share the code for each channel
- Emulator::Interface::audioSample(int16 left, int16 right); changed to:
- Emulator::Interface::audioSample(double* samples, uint channels);
- samples are normalized [-1.0 to +1.0]
- for now at least, channels will be the value given to
Emulator::Audio::reset()
- fixed GUI crash on startup when audio driver is set to None
I'm probably going to be updating ruby to accept normalized doubles as
well; but I'm not sure if I will try and support anything other 2-channel
audio output. It'll depend on how easy it is to do so; perhaps it'll be
a per-driver setting.
The denormalization thing is fierce. If that happens, it drops the
emulator framerate from 220fps to about 20fps for Game Boy emulation. And
that happens basically whenever audio output is silent. I'm probably
also going to make a nall/denormal.hpp file at some point with
platform-specific functionality to set the CPU state to "denormals as
zero" where applicable. I'll still add the 1e-25 offset (inaudible)
as another fallback.
byuu says:
Changelog:
- nall/dsp returns with new iir/biquad.hpp and resampler/cubic.hpp files
- nall/queue.hpp added (simple ring buffer ... nall/vector wouldn't
cause too many moves with FIFO)
- audio streams now only buffer 20ms; so even if multiple audio streams
desync, latency can never exceed 20ms
- replaced blackman windwed sinc FIR hermite audio filter with transposed
direct form II biquadratic sixth-order IIR butterworth filter (better
attenuation of frequencies above 20KHz, faster, no need for decimation,
less code)
- put in experimental eight-tap echo filter (a lot better than what I
had before, but still rather weak)
- substantial cleanups to the SuperFX GSU processor core (slightly
faster, 479KB->100KB object file, 42.7KB->33.4KB source code size,
way less code duplication)
We'll definitely want to test the whole SuperFX library (not many games)
just to make sure there's no regressions caused by this one.
Not sure what I want to do with audio processing effects yet. I've always
really wanted lots of fun controls to customize audio, and now finally
with this new biquad filter, I can finally start implementing real
effects. For instance, an equalizer wouldn't be too complicated anymore.
The new reverb effect is still a poor man's version. I need to find human
readable source for implementing a comb-filter properly. I'm pretty sure
I can already treat nall::queue as an all-pass filter since all that
does is phase shift (fancy audio term for "delay audio"). What's really
going to be hard is figuring out how to expose user-friendly settings for
controlling it. It looks like you need a bunch of coprime coefficients,
and I don't think casual users are going to be able to hand-enter coprime
values to get the echo effect they want. I uh ... don't even know how
to calculate coprime values dynamically right now >_> But we're going
to have to, as they are correlated to the output sampling rate.
We'll definitely want to make some audio profiles so that users can
quickly select pre-configured themes that sound nice, but expose the
underlying coefficients so that they can tweak stuff to their liking. This
isn't just about higan, this is about me trying to learn digital signal
processing, so please don't be too upset about feature creep or anything
on this.
Anyway ... I'm having some difficulties with my audio right now. When
the reverb effect is enabled, there's a bunch of static on system
reset for just a moment. But this should not be possible. nall::queue
is initializing all previous reverb sample elements to 0.0. I don't
understand where static is coming in from. Further, we have the same
issue with both the windowed sinc and the biquad filters ... a bit of
a popping sound when starting a game. Any help tracking this down would
be appreciated.
There's also one really annoying issue ... I can't seem to do reverb
or volume adjustments with normalized samples. If I say "volume *= 0.5"
in higan/audio/audio.cpp line 68, it doesn't just halve the volume, it
adds a whole bunch of distortion. This makes absolutely zero sense to
me. The sample values are between 0.0 (mute) and 1.0 (full volume) here,
so multiplying a double by 0.5 shouldn't cause distortion. So right now,
I'm doing these adjustments with less precision after denormalizing back
to int16. Anyone ever see something like that? :/
byuu says:
Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
- this should stop all the bug reports where two nall users were
generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
- merged emulation/native-mode opcodes
- use camel-case naming on memory.hpp functions
- simplify address masking code for memory.hpp functions
- simplify a few opcodes themselves (avoid redundant copies, etc)
- rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
- cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
- example: emulator.ports[p].devices[d].inputs[i]
- example: vector<Medium> media
- probably more surprises
Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
Justifier)
- after the above, we need to fix the turbo button for the Super Scope
I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
byuu says:
Changelog:
- fixed major nall/vector/prepend bug
- renamed hiro/ListView to hiro/TableView
- added new hiro/ListView control which is a simplified abstraction of
hiro/TableView
- updated higan's cheat database window and icarus' scan dialog to use
the new ListView control
- compilation works once again on all platforms (Windows, Cocoa, GTK,
Qt)
- the loki skeleton compiles once again (removed nall/DSP references;
updated port/device ID names)
Small catch: need to capture layout resize events internally in Windows
to call resizeColumns. For now, just resize the icarus window to get it
to use the full window width for list view items.
byuu says:
Changelog:
- nall/vector rewritten from scratch
- higan/audio uses nall/vector instead of raw pointers
- higan/sfc/coprocessor/sdd1 updated with new research information
- ruby/video/glx and ruby/video/glx2: fuck salt glXSwapIntervalEXT!
The big change here is definitely nall/vector. The Windows, OS X and Qt
ports won't compile until you change some first/last strings to
left/right, but GTK will compile.
I'd be really grateful if anyone could stress-test nall/vector. Pretty
much everything I do relies on this class. If we introduce a bug, the
worst case scenario is my entire SFC game dump database gets corrupted,
or the byuu.org server gets compromised. So it's really critical that we
test the hell out of this right now.
The S-DD1 changes mean you need to update your installation of icarus
again. Also, even though the Lunar FMV never really worked on the
accuracy core anyway (it didn't initialize the PPU properly), it really
won't work now that we emulate the hard-limit of 16MiB for S-DD1 games.
byuu says:
Changelog:
- GB: support modeSelect and RAM for MBC1M (Momotarou Collection)
- audio: implemented native resampling support into Emulator::Stream
- audio: removed nall::DSP completely
Unfortunately, the new resampler didn't turn out quite as fast as I had
hoped. The final hermite resampling added some overhead; and I had to
bump up the kernel count to 500 from 400 to get the buzzing to go away
on my main PC. I think that's due to it running at 48000hz output
instead of 44100hz output, maybe?
Compared to Ryphecha's:
(NES) Mega Man 2: 167fps -> 166fps
(GB) Mega Man II: 224fps -> 200fps
(WSC) Riviera: 143fps -> 151fps
Odd that the WS/WSC ends up faster while the DMG/CGB ends up slower.
But this knocks 922 lines down to 146 lines. The only files left in all
of higan not written (or rewritten) by me are ruby/xaudio2.h and
libco/ppc.c
byuu says:
Changelog:
- emulation cores now refresh video from host thread instead of
cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
- it is now possible to have more than two audio streams: eg SNES
+ SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it
I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.
Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/
I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
byuu says:
It took several hours, but I've rebuilt much of the SNES' bus memory
mapping architecture.
The new design unifies the cartridge string-based mapping
("00-3f,80-bf:8000-ffff") and internal bus.map calls. The map() function
now has an accompanying unmap() function, and instead of a fixed 256
callbacks, it'll scan to find the first available slot. unmap() will
free slots up when zero addresses reference a given slot.
The controllers and expansion port are now both entirely dynamic.
Instead of load/unload/power/reset, they only have the constructor
(power/reset/load) and destructor (unload). What this means is you can
now dynamically change even expansion port devices after the system is
loaded.
Note that this is incredibly dangerous and stupid, but ... oh well. The
whole point of this was for 21fx. There's no way to change the expansion
port device prior to loading a game, but if the 21fx isn't active, then
the reset vector hijack won't work. Now you can load a 21fx game, change
the expansion port device, and simply reset the system to active the
device.
The unification of design between controller port devices and expansion
port devices is nice, and overall this results in a reduction of code
(all of the Mapping stuff in Cartridge is gone, replaced with direct bus
mapping.) And there's always the potential to expand this system more in
the future now.
The big missing feature right now is the ability to push/pop mappings.
So if you look at how the 21fx does the reset vector, you might vomit
a little bit. But ... it works.
Also changed exit(0) to _exit(0) in the POSIX version of nall::execute.
[The _exit(0) thing is an attempt to make higan not crash when it tries
to launch icarus and it's not on $PATH. The theory is that higan forks,
then the child tries to exec icarus and fails, so it exits, all the
unique_ptrs clean up their resources and tell the X server to free
things the parent process is still using. Calling _exit() prevents
destructors from running, and seems to prevent the problem. -Ed.]
byuu says:
Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
merged to SFC::Cothread
- Cothread here just means "Thread with CPU affinity" (couldn't think
of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
- this is the beginning of work to allow expansion port devices to be
dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
no frequency is assigned
- note: the WASAPI driver can default to whatever the native frequency
is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
it will display the frequency used)
- tomoko: removed the timing settings panel
- the goal is to work toward smooth video via adaptive sync
- the model is broken by not being in control of the audio frequency
anyway
- it's further broken by PAL running at 50hz and WSC running at 75hz
- it was always broken anyway by SNES interlace timing varying from
progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
(libco, emulator, audio, video)
The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
byuu says:
Changelog:
- fixed DAS instruction (Judgment Silversword score)
- fixed [VH]TMR_FREQ writes (Judgement Silversword audio after area 20)
- fixed initialization of SP (fixes seven games that were hanging on
startup)
- added SER_STATUS and SER_DATA stubs (fixes four games that were
hanging on startup)
- initialized IEEP data (fixes Super Robot Taisen Compact 2 series)
- note: you'll need to delete your internal.com in WonderSwan
(Color).sys folders
- fixed CMPS and SCAS termination condition (fixes serious bugs in four
games)
- set read/writeCompleted flags for EEPROM status (fixes Tetsujin 28
Gou)
- major code cleanups to SFC/R65816 and SFC/CPU
- mostly refactored disassembler to output strings instead of using
char* buffer
- unrolled all the subfolders on sfc/cpu to a single directory
- corrected casing for all of sfc/cpu and a large portion of
processor/r65816
I kind of went overboard on the code cleanup with this WIP. Hopefully
nothing broke. Any testing one can do with the SFC accuracy core would
be greatly appreciated.
There's still an absolutely huge amount of work left to go, but I do
want to eventually refresh the entire codebase to my current coding
style, which is extremely different from stuff that's been in higan
mostly untouched since ~2006 or so. It's dangerous and fickle work, but
if I don't do it, then the code will be a jumbled mess of several
different styles.
byuu says:
Changelog: (all WSC unless otherwise noted)
- fixed LINECMP=0 interrupt case (fixes FF4 world map during airship
sequence)
- improved CPU timing (fixes Magical Drop flickering and FF1 battle
music)
- added per-frame OAM caching (fixes sprite glitchiness in Magical Drop,
Riviera, etc.)
- added RTC emulation (fixes Dicing Knight and Judgement Silversword)
- added save state support
- added cheat code support (untested because I don't know of any cheat
codes that exist for this system)
- icarus: can now detect games with RTC chips
- SFC: bugfix to SharpRTC emulation (Dai Kaijuu Monogatari II)
- ( I was adding the extra leap year day to all 12 months instead of
just February ... >_< )
Note that the RTC emulation is very incomplete. It's not really
documented at all, and the two games I've tried that use it never even
ask you to set the date/time (so they're probably just using it to count
seconds.) I'm not even sure if I've implement the level-sensitive
behavior correctly (actually, now that I think about it, I need to mask
the clear bit in INT_ACK for the level-sensitive interrupts ...)
A bit worried about the RTC alarm, because it seems like it'll fire
continuously for a full minute. Or even if you turn it off after it
fires, then that doesn't seem to be lowering the line until the next
second ticks on the RTC, so that likely needs to happen when changing
the alarm flag.
Also not sure on this RTC's weekday byte. On the SharpRTC, it actually
computes this for you. Because it's not at all an easy thing to
calculate yourself in 65816 or V30MZ assembler. About 40 lines of code
to do it in C. For now, I'm requiring the program to calculate the value
itself.
Also note that there's some gibberish tiles in Judgement Silversword,
sadly. Not sure what's up there, but the game's still fully playable at
least.
Finally, no surprise: Beat-Mania doesn't run :P
byuu says:
Changelog:
- fixed SNES sprite priority regression from r17
- added nall/windows/guard.hpp to guard against global namespace
pollution (similar to nall/xorg/guard.hpp)
- almost fixed Windows compilation (still accuracy profile only, sorry)
- finished porting all of gba/ppu's registers over to the new .bit,.bits
format ... all GBA registers.cpp files gone now
- the "processors :=" line in the target-$(ui)/GNUmakefile is no longer
required
- processors += added to each emulator core
- duplicates are removed using the new nall/GNUmakefile's $(unique)
function
- SFC core can be compiled without the GB core now
- "-DSFC_SUPERGAMEBOY" is required to build in SGB support now (it's
set in target-tomoko/GNUmakefile)
- started once again on loki (higan/target-loki/) [as before, loki is
Linux/BSD only on account of needing hiro::Console]
loki shouldn't be too horrendous ... I hope. I just have the base
skeleton ready for now. But the code from v094r08 should be mostly
copyable over to it. It's just that it's about 50KiB of incredibly
tricky code that has to be just perfect, so it's not going to be quick.
But at least with the skeleton, it'll be a lot easier to pick away at it
as I want.
Windows compilation fix: move hiro/windows/header.hpp line 18 (header
guard) to line 16 instead.
byuu says:
Changelog:
- higan now uses Natural<Size>/Integer<Size> for its internal types
- Super Famicom emulation now uses uint24 instead of uint for bus
addresses (it's a 24-bit bus)
- cleaned up gb/apu MMIO writes
- cleaned up sfc/coprocessor/msu1 MMIO writes
- ~3% speed penalty
I've wanted to do that 24-bit bus thing for so long, but have always
been afraid of the speed impact. It's probably going to hurt
balanced/performance once they compile again, but it wasn't significant
enough to harm the accuracy core's frame rate, thankfully. Only lost one
frame per second.
The GBA core handlers are clearly going to take a lot more work. The
bit-ranges will make it substantially easier to handle, though. Lots of
32-bit registers where certain values span multiple bytes, but we have
to be able to read/write at byte-granularity.
byuu says:
Got it. Wow, that didn't hurt nearly as much as I thought it was going
to.
Dropped from 127.5fps to 123.5fps to use Natural/Integer for
(u)int(8,16,32,64).
That's totally worth the cost.
byuu says:
This is a few days old, but oh well.
This WIP changes nall,hiro,ruby,icarus back to (u)int(8,16,32,64)_t.
I'm slowly pushing for (u)int(8,16,32,64) to use my custom
Integer<Size>/Natural<Size> classes instead. But it's going to be one
hell of a struggle to get that into higan.
byuu says:
I refactored my schedulers. Added about ten lines to each scheduler, and
removed about 100 lines of calling into internal state in the scheduler
for the FC,SFC cores and about 30-40 lines for the other cores. All of
its state is now private.
Also reworked all of the entry points to static auto Enter() and auto
main(). Where Enter() handles all the synchronization stuff, and main()
doesn't need the while(true); loop forcing another layer of indentation
everywhere.
Took a few hours to do, but totally worth it. I'm surprised I didn't do
this sooner.
Also updated icarus gmake install rule to copy over the database.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
byuu says:
Note: balanced/performance profiles still broken, sorry.
Changelog:
- added nall/GNUmakefile unique() function; used on linking phase of
higan
- added nall/unique_pointer
- target-tomoko and {System}::Video updated to use
unique_pointer<ClassName> instead of ClassName* [1]
- locate() updated to search multiple paths [2]
- GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs
- FC, GB, GBA: merge video/ into the PPU cores
- ruby: fixed ~AudioXAudio2() typo
[1] I expected this to cause new crashes on exit due to changing the
order of destruction of objects (and deleting things that weren't
deleted before), but ... so far, so good. I guess we'll see what crops
up, especially on OS X (which is already crashing for unknown reasons on
exit.)
[2] right now, the search paths are: programpath(), {configpath(),
"higan/"}, {localpath(), "higan/"}; but we can add as many more as we
want, and we can also add platform-specific versions.
byuu says:
A minor WIP to get us started.
Changelog:
- System::Video merged to PPU::Video
- System::Audio merged to DSP::Audio
- System::Configuration merged to Interface::Settings
- created emulator/emulator.cpp and accompanying object file for shared
code between all cores
Currently, emulator.cpp just holds a videoColor() function that takes
R16G16B16, performs gamma/saturation/luma adjust, and outputs
(currently) A8R8G8B8. It's basically an internal function call for cores
to use when generating palette entries. This code used to exist inside
ui-tomoko/program/interface.cpp, but we have to move it internal for
software display emulation. But in the future, we could add other useful
cross-core functionality here.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
byuu says:
This WIP finally achieves the vision I've had for icarus.
I also fixed a mapping issue with Cx4 that, oddly enough, only caused
the "2" from the Mega Man X2 title screen to disappear.
[Editor's note - "the vision for icarus" was described in a separate,
public forum post: http://board.byuu.org/phpbb3/viewtopic.php?p=20584
Quoting for posterity:
icarus is now a full-fledged part of higan, and will be bundled with
each higan WIP as well. This will ensure that in the future, the
exact version of icarus you need to run higan will be included right
along with it. As of this WIP, physical manifest files are now truly
and entirely optional.
From now on, you can associate your ROM image files with higan's
main binary, or drop them directly on top of it, to load and play
your games.
Furthermore, there are two new menu options that appear under the
library menu when icarus is present:
- "Load ROM File ..." => gives you a single-file selection dialog to
import (and if possible) run the game
- "Import ROM Files ..." => gives you a multi-file import dialog
with checkboxes to pull in multiple games at once
Finally, as before, icarus can generate manifest.bml files for
folders that lack them.
For people who like the game folder and library system, nothing's
changed. Keep using higan as you have been.
For people who hate it, you can now use higan like your classic
emulators. Treat the "Library->{System Name}" entries as your
"favorites" list: the games you actually play. Treat the
"Library->Load ROM" as your standard open file dialog in other
emulators. And finally, treat "Advanced->Game Library" as your save
data path for cheat codes, save states, save RAM, etc.
]
byuu says:
Changelog:
- fixed S-DD1 RAM writes (Star Ocean audio fixed)
- applied all of the DMG test ROM fixes discussed earlier; passes many
more test ROMs now
- at least until the GBVideoPlayer is working: for debugging purposes,
CPU/PPU single-step now instead of sync just-in-time (~30% slower)
- fixed OS X crash on NSTextView (hopefully, would be very odd if not)
Unfortunately passing these test ROMs caused my favorite GB/GBC game to
break all of its graphics =(
Shin Megami Tensei - Devichil - Kuro no Sho (Japan) is all garbled now.
I'm really quite bummed by this ... but I guess I'll go through and
revert r04's fixes one at a time until I find what's causing it.
On the plus side, Astro Rabby is playable now. Still acts weird when
pressing B/A on the first screen, but the start button will start the
game.
EDIT: got it. Shin Megami Tensei - Devichil requires FF4F (VBK) to be
readable. Before, it was always returning 0x00. With my return 0xFF
patch, that broke. But it should be returning the VBK value, which also
fixes it. Also need to handle FF68/FF6A reads. Was really hoping that'd
help GBVideoPlayer too, but nope. It doesn't read any of those three
registers.
byuu says:
Changelog:
- restructured the project and removed a whole bunch of old/dead
directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
region=(ntsc,pal) ... the former was too obtuse
If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.
It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.