byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
byuu says:
Updated to compile with all of the new hiro changes. My next step is to
write up hiro API documentation, and move the API from alpha (constantly
changing) to beta (rarely changing), in preparation for the first stable
release (backward-compatible changes only.)
Added "--fullscreen" command-line option. I like this over
a configuration file option. Lets you use the emulator in both modes
without having to modify the config file each time.
Also enhanced the command-line game loading. You can now use any of
these methods:
higan /path/to/game-folder.sfc
higan /path/to/game-folder.sfc/
higan /path/to/game-folder.sfc/program.rom
The idea is to support launchers that insist on loading files only.
Technically, the file can be any name (manifest.bml also works); the
only criteria is that the file actually exists and is a file, and not
a directory. This is a requirement to support the first version (a
directory lacking the trailing / identifier), because I don't want my
nall::string class to query the file system to determine if the string
is an actual existing file or directory for its pathname() / dirname()
functions.
Anyway, every game folder I've made so far has program.rom, and that's
very unlikely to change, so this should be fine.
Now, of course, if you drop a regular "game.sfc" file on the emulator,
it won't even try to load it, unless it's in a folder that ends in .fc,
.sfc, etc. In which case, it'll bail out immediately by being unable to
produce a manifest for what is obviously not really a game folder.
byuu says:
Main reason for this WIP was because of all the added lines to hiro for
selective component disabling. May as well get all the diff-noise apart
from code changes.
It also merges something I've been talking to Cydrak about ... making
nall::string::(integer,decimal) do built-in binary,octal,hex decoding
instead of just failing on those. This will have fun little side effects
all over the place, like being able to view a topic on my forum via
"forum.byuu.org/topic/0b10010110", heh.
There are two small changes to higan itself, though. First up, I fixed
the resampler ratio when loading non-SNES games. Tested and I can play
Game Boy games fine now. Second, I hooked up menu option hiding for
reset and controller selection. Right now, this works like higan v094,
but I'm thinking I might want to show the "Device -> Controller" even if
that's all that's there. It kind of jives nicer with the input settings
window to see the labels there, I think. And if we ever do add more
stuff, it'll be nice that people already always expect that menu there.
Remaining issues:
* add slotted cart loader (SGB, BSX, ST)
* add DIP switch selection window (NSS)
* add timing configuration (video/audio sync)
byuu says:
This will easily be the biggest diff in the history of higan. And not in
a good way.
* target-higan and target-loki have been blown away completely
* nall and ruby massively updated
* phoenix replaced with hiro (pretty near a total rewrite)
* target-higan restarted using hiro (just a window for now)
* all emulation cores updated to compile again
* installation changed to not require root privileges (installs locally)
For the foreseeable future (maybe even permanently?), the new higan UI
will only build under Linux/BSD with GTK+ 2.20+. Probably the most
likely route for Windows/OS X will be to try and figure out how to build
hiro/GTK on those platforms, as awful as that would be. The other
alternative would be to produce new UIs for those platforms ... which
would actually be a good opportunity to make something much more user
friendly.
Being that I just started on this a few hours ago, that means that for
at least a few weeks, don't expect to be able to actually play any
games. Right now, you can pretty much just compile the binary and that's
it. It's quite possible that some nall changes didn't produce
compilation errors, but will produce runtime errors. So until the UI can
actually load games, we won't know if anything is broken. But we should
mostly be okay. It was mostly just trim<1> -> trim changes, moving to
Hash::SHA256 (much cleaner), and patching some reckless memory copy
functions enough to compile.
Progress isn't going to be like it was before: I'm now dividing my time
much thinner between studying and other hobbies.
My aim this time is not to produce a binary for everyone to play games
on. Rather, it's to keep the emulator alive. I want to be able to apply
critical patches again. And I would also like the base of the emulator
to live on, for use in other emulator frontends that utilize higan.