byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
byuu says:
Changelog:
- WS: fixed sprite window clipping (again)
- WS: don't set IRQ status bits of IRQ enable bits are clear
- SFC: signed/unsigned -> int/uint for DSP core
- SFC: removed eBoot
- SFC: added 21fx (not the same as the old precursor to MSU1; just
reusing the name)
Note: XI Little doesn't seem to be fixed after all ... but the other
three are. So I guess we're at 13 bugs :( And holy shit that music when
you choose a menu option is one of the worst sounds I've ever heard in
my life >_<
byuu says:
Changelog:
- fixed DAS instruction (Judgment Silversword score)
- fixed [VH]TMR_FREQ writes (Judgement Silversword audio after area 20)
- fixed initialization of SP (fixes seven games that were hanging on
startup)
- added SER_STATUS and SER_DATA stubs (fixes four games that were
hanging on startup)
- initialized IEEP data (fixes Super Robot Taisen Compact 2 series)
- note: you'll need to delete your internal.com in WonderSwan
(Color).sys folders
- fixed CMPS and SCAS termination condition (fixes serious bugs in four
games)
- set read/writeCompleted flags for EEPROM status (fixes Tetsujin 28
Gou)
- major code cleanups to SFC/R65816 and SFC/CPU
- mostly refactored disassembler to output strings instead of using
char* buffer
- unrolled all the subfolders on sfc/cpu to a single directory
- corrected casing for all of sfc/cpu and a large portion of
processor/r65816
I kind of went overboard on the code cleanup with this WIP. Hopefully
nothing broke. Any testing one can do with the SFC accuracy core would
be greatly appreciated.
There's still an absolutely huge amount of work left to go, but I do
want to eventually refresh the entire codebase to my current coding
style, which is extremely different from stuff that's been in higan
mostly untouched since ~2006 or so. It's dangerous and fickle work, but
if I don't do it, then the code will be a jumbled mess of several
different styles.
byuu says:
Changelog: (all WSC unless otherwise noted)
- fixed LINECMP=0 interrupt case (fixes FF4 world map during airship
sequence)
- improved CPU timing (fixes Magical Drop flickering and FF1 battle
music)
- added per-frame OAM caching (fixes sprite glitchiness in Magical Drop,
Riviera, etc.)
- added RTC emulation (fixes Dicing Knight and Judgement Silversword)
- added save state support
- added cheat code support (untested because I don't know of any cheat
codes that exist for this system)
- icarus: can now detect games with RTC chips
- SFC: bugfix to SharpRTC emulation (Dai Kaijuu Monogatari II)
- ( I was adding the extra leap year day to all 12 months instead of
just February ... >_< )
Note that the RTC emulation is very incomplete. It's not really
documented at all, and the two games I've tried that use it never even
ask you to set the date/time (so they're probably just using it to count
seconds.) I'm not even sure if I've implement the level-sensitive
behavior correctly (actually, now that I think about it, I need to mask
the clear bit in INT_ACK for the level-sensitive interrupts ...)
A bit worried about the RTC alarm, because it seems like it'll fire
continuously for a full minute. Or even if you turn it off after it
fires, then that doesn't seem to be lowering the line until the next
second ticks on the RTC, so that likely needs to happen when changing
the alarm flag.
Also not sure on this RTC's weekday byte. On the SharpRTC, it actually
computes this for you. Because it's not at all an easy thing to
calculate yourself in 65816 or V30MZ assembler. About 40 lines of code
to do it in C. For now, I'm requiring the program to calculate the value
itself.
Also note that there's some gibberish tiles in Judgement Silversword,
sadly. Not sure what's up there, but the game's still fully playable at
least.
Finally, no surprise: Beat-Mania doesn't run :P
byuu says:
Absolutely major improvements to the WS/C emulation today.
Changelog: (all WS/C related)
- fixed channel 3 sweep pitch adjustment
- fixed channel 3 sweep value sign extension
- removed errant channel 5 speed setting (not what's really going on)
- fixed sign extension on channel 5 samples
- improved DAC mixing of all five audio channels
- fixed r26 regression with PPU timing loop
- fixed sprite windowing behavior (sprite attribute flag is window mode;
not window enable)
- added per-scanline register latching to the PPU
- IRQs should terminate HLT even when the IRQ enable register bits are
clear
- fixed PALMONO reads
- added blur emulation
- added color emulation (based on GBA, so it heavily desaturates colors;
not entirely correct, but it helps a lot)
- no longer decimating audio to 24KHz; running at full 3.072MHz through
the windowed sinc filter [1]
- cleaned up PPU portRead / portWrite functions significantly
- emulated a weird quirk as mentioned by trap15 regarding timer
frequency writes enabling said timers [2]
- emulated LCD_CTRL sleep bit; screen can now be disabled (always draws
black in this case for now)
- improved OAM caching; but it's still disabled because it causes huge
amounts of sprite glitches (unsure why)
- fixed rendering of sprites that wrap around the screen edges back to
the top/left of the display
- emulated keypad interrupts
- icarus: detect orientation bit in game header
- higan: use orientation setting in manifest to set default screen
rotation
[1] the 24KHz -> 3.072MHz sound change is huge. Sound is substantially
improved over the previous WIPs. It does come at a pretty major speed
penalty, though. This is the highest frequency of any system in higan
running through an incredibly (amazing, yet) demanding sinc resampler.
Frame rate dropped from around 240fps to 150fps with the sinc filter on.
If you choose a different audio filter, you'll get most of that speed
back, but audio will sound worse again.
[2] we aren't sure if this is correct hardware behavior or not. It seems
to very slightly help Magical Drop, but not much.
The blur emulation is brutal. It's absolutely required for Riviera's
translucency simulation of selected menu items, but it causes serious
headaches due to the WS's ~75hz refresh rate running on ~60hz monitors
without vsync. It's probably best to leave it off and just deal with the
awful flickering on Riviera's menu options.
Overall, WS/C emulation is starting to get quite usable indeed. Couple
of major bugs that I'd really like to get fixed before releasing it,
though. But they're getting harder and harder to fix ...
Major Bugs:
- Final Fantasy battle background music is absent. Sound effects still
work. Very weird.
- Final Fantasy IV scrolling during airship flight opening sequence is
horribly broken. Scrolls one screen at a time.
- Magical Drop flickers like crazy in-game. Basically unplayable like
this.
- Star Hearts character names don't appear in the smaller dialog box
that pops up.
Minor Bugs:
- Occasional flickering during Riviera opening scenes.
- One-frame flicker of Leda's sprite at the start of the first stage.
byuu says:
Changelog:
- WS: fixed 8-bit sign-extended imul (fixes Star Hearts completely,
Final Fantasy world map)
- WS: fixed rcl/rcr carry shifting (fixes Crazy Climber, others)
- WS: added sound DMA emulation (Star Hearts rain sound for one example)
- WS: added OAM caching, but it's forced every line for now because
otherwise there are too many sprite glitches
- WS: use headphoneEnable bit instead of speakerEnable bit (fixes muted
audio in games)
- WS: various code cleanups (I/O mapping, audio channel naming, etc)
The hypervoice channel doesn't sound all that great just yet. But I'm
not sure how it's supposed to sound. I need a better example of some
more complex music.
What's left are some unknown register status bits (especially in the
sound area), keypad interrupts, RTC emulation, CPU prefetch emulation.
And then it's all just bugs. Lots and lots of bugs that need to be
fixed.
EDIT: oops, bad typo in the code.
ws/ppu/ppu.cpp line 20: change range(256) to range(224).
Also, delete the r.speed stuff from channel5.cpp to make the rain sound
a lot better in Star Hearts. Apparently that's outdated and not what the
bits really do.
byuu says:
Changelog:
- WS: added HblankTimer and VblankTimer IRQs; although they don't appear
to have any effect on any games that use them :/
- WS: added sound emulation; works perfectly in some games (eg Riviera);
is completely silent in most games (eg GunPey)
The sound emulation only partially supports the hypervoice (headphone
only) channel. I need to implement the SDMA before it'll actually do
anything useful. I'm a bit confused about how exactly things work. It
looks like the speaker volume shift and clamp only applies to speaker
mode and not headphone mode, which is very weird. Then there's the
software possibility of muting the headphones and/or the speaker.
Preferably, I want to leave the emulator always in headphone mode for
the extra audio channel. If there are games that force-mute the
headphones, but not speakers, then I may need to force headphones back
on but with the hypervoice channel disabled. I guess we'll see how
things go.
Rough guess is probably that the channels default to enabled after the
IPLROM, and games aren't bothering to manually enable them or something.
byuu says:
Changelog:
- WS: fixed bug when IRQs triggered during a rep string instruction
- WS: added sprite attribute caching (per-scanline); absolutely massive
speed-up
- WS: emulated limit of 32 sprites per scanline
- WS: emulated the extended PPU register bit behavior based on the
DISP_CTRL tile bit-depth setting
- WS: added "Rotate" key binding; can be used to flip the WS display
between horizontal and vertical in real-time
The prefix emulation may not be 100% hardware-accurate, but the edge
cases should be extreme enough to not come up in the WS library. No way
to get the emulation 100% down without intensive hardware testing.
trap15 pointed me at a workflow diagram for it, but that diagram is
impossible without a magic internal stack frame that grows with every
IRQ, and can thus grow infinitely large.
The rotation thing isn't exactly the most friendly set-up, but oh well.
I'll see about adding a default rotation setting to manifests, so that
games like GunPey can start in the correct orientation. After that, if
the LCD orientation icon turns out to be reliable, then I'll start using
that. But if there are cases where it's not reliable, then I'll leave it
to manual button presses.
Speaking of icons, I'll need a set of icons to render on the screen.
Going to put them to the top right on vertical orientation, and on the
bottom left for horizontal orientation. Just outside of the video
output, of course.
Overall, WS is getting pretty far along, but still some major bugs in
various games. I really need sound emulation, though. Nobody's going to
use this at all without that.
byuu says:
Changelog:
- emulated SuperDisc $21e1 basic interface (NEC 4-bit MCU); all hardware
tests pass now (but they don't test much)
- WS/V30MZ: fixed inc/dec reg flag calculation
- WS/V30MZ: fixed lds/les instructions
WS/C compatibility should be way up now. SuperDisc BIOS passes all tests
now (but they only test for the presence of the interface, nothing
more.)
byuu says:
Changelog:
- WS: fixed lods, scas instructions
- WS: implemented missing GRP4 instructions
- WS: fixed transparency for screen one
- WSC: added color-mode PPU rendering
- WS+WSC: added packed pixel mode support
- WS+WSC: added dummy sound register reads/writes
- SFC: added threading to SuperDisc (it's hanging for right now; need to
clear IRQ on $21e2 writes)
SuperDisc Timer and Sound Check were failing before due to not turning
off IRQs on $21e4 clear, so I'm happy that's fixed now.
Riviera starts now, and displays the first intro screen before crashing.
Huge, huge amounts of corrupted graphics, though. This game's really
making me work for it :(
No color games seem fully playable yet, but a lot of monochrome and
color games are now at least showing more intro screen graphics before
dying.
This build defaults to horizontal orientation, but I left the inputs
bound to vertical orientation. Whoops. I still need to implement
a screen flip key binding.
byuu says:
Changelog:
- icarus: WS/C detects RAM type/size heuristically now
- icarus: WS/C uses ram type=$type instead of $type
- WS: use back color instead of white for backdrop
- WS: fixed sprite count limit; removes all the garbled sprites from
GunPey
- WS: hopefully fixed sprite priority with screen 2
- WS: implemented keypad polling; GunPey is now fully playable
- SNES: added Super Disc expansion port device (doesn't do anything,
just for testing)
Note: WS is hard-coded to vertical orientation right now. But there's
basic code in there for all the horizontal stuff.
byuu says:
Changelog:
- WS: fixed a major CPU bug where I was using the wrong bits for
ModR/M's memory mode
- WS: added grayscale PPU emulation (exceptionally buggy)
GunPey now runs, as long as you add:
eeprom name=save.ram size=0x800
to the manifest after importing with icarus.
Right now, you can't control the game due to missing keypad polling.
There's also a lot of glitchiness with the sprites. Seems like they're
not getting properly cleared sometimes or something.
Also, the PPU emulation is totally unrealistic bullshit. I decode and
evaluate every single tile and sprite on every single pixel of output.
No way in hell the hardware could ever come close to that. The speed's
around 500fps without the insane sprite evaluations, and around 90fps
with it. Obviously, I'll fix this in time.
Nothing else seems to run that I've tried. Not even far enough to
display any output whatsoever. Tried Langrisser Millenium, Rockman
& Forte and Riviera. I really need to update icarus to try and encode
eeprom/sram sizes, because that's going to break a lot of stuff if it's
missing.
byuu says:
Changelog:
- higan now uses Natural<Size>/Integer<Size> for its internal types
- Super Famicom emulation now uses uint24 instead of uint for bus
addresses (it's a 24-bit bus)
- cleaned up gb/apu MMIO writes
- cleaned up sfc/coprocessor/msu1 MMIO writes
- ~3% speed penalty
I've wanted to do that 24-bit bus thing for so long, but have always
been afraid of the speed impact. It's probably going to hurt
balanced/performance once they compile again, but it wasn't significant
enough to harm the accuracy core's frame rate, thankfully. Only lost one
frame per second.
The GBA core handlers are clearly going to take a lot more work. The
bit-ranges will make it substantially easier to handle, though. Lots of
32-bit registers where certain values span multiple bytes, but we have
to be able to read/write at byte-granularity.
byuu says:
Got it. Wow, that didn't hurt nearly as much as I thought it was going
to.
Dropped from 127.5fps to 123.5fps to use Natural/Integer for
(u)int(8,16,32,64).
That's totally worth the cost.
byuu says:
This is a few days old, but oh well.
This WIP changes nall,hiro,ruby,icarus back to (u)int(8,16,32,64)_t.
I'm slowly pushing for (u)int(8,16,32,64) to use my custom
Integer<Size>/Natural<Size> classes instead. But it's going to be one
hell of a struggle to get that into higan.
byuu says:
I refactored my schedulers. Added about ten lines to each scheduler, and
removed about 100 lines of calling into internal state in the scheduler
for the FC,SFC cores and about 30-40 lines for the other cores. All of
its state is now private.
Also reworked all of the entry points to static auto Enter() and auto
main(). Where Enter() handles all the synchronization stuff, and main()
doesn't need the while(true); loop forcing another layer of indentation
everywhere.
Took a few hours to do, but totally worth it. I'm surprised I didn't do
this sooner.
Also updated icarus gmake install rule to copy over the database.
byuu says:
Alright, well interrupts are in. At least Vblank is.
I also fixed a bug in vector() indexing, MoDRM mod!=3&®==6 using SS
instead of DS, opcodes a0-a3 allowing segment override, and added the
"irq_disable" stuff to the relevant opcodes to suppress IRQs after
certain instructions.
But unfortunately ... still no go on Riviera. It's not reading any
unmapped ports, and although it enables Vblank IRQs and they set port
$b4's status bit, the game never sets the IE flag, so no interrupts ever
actually fire. The game does indeed appear to be sitting in a rather
huge loop, which is probably dependent upon some RAM variable being set
from the Vblank IRQ, but I don't know how I'm supposed to be triggering
it.
... I'm really quite stumped here >_>
byuu says:
All 256 instructions implemented fully. Fixed a major bug with
instructions that both read and write to ModRM with displacement.
Riviera now runs into an infinite loop ... possibly crashed, possibly
waiting on interrupts or in to return something. Added a bunch of PPU
settings registers, but nothing's actually rendering with them yet.
byuu says:
More V30MZ implemented, a lot more to go.
icarus now supports importing WS and WSC games. It expects them to have
the correct file extension, same for GB and GBC.
> Ugh, apparently HiDPI icarus doesn't let you press the check boxes.
I set the flag value in the plist to false for now. Forgot to do it for
higan, but hopefully I won't forget before release.
byuu says:
Lots of improvements. We're now able to start executing some V30MZ
instructions. 32 of 256 opcodes implemented so far.
I hope this goes without saying, but there's absolutely no point in
loading WS/WSC games right now. You won't see anything until I have the
full CPU and partial PPU implemented.
ROM bank 2 works properly now, the I/O map is 16-bit (address) x 16-bit
(data) as it should be*, and I have a basic disassembler in place
(adding to it as I emulate new opcodes.)
(* I don't know what happens if you access an 8-bit port in 16-bit mode
or vice versa, so for now I'm just treating the handlers as always being
16-bit, and discarding the upper 8-bits when not needed.)
byuu says:
So, this WIP starts work on something new for higan. Obviously, I can't
keep it a secret until it's ready, because I want to continue daily WIP
releases, and of course, solicit feedback as I go along.