bsnes/nall/reed-solomon.hpp

219 lines
7.0 KiB
C++
Raw Normal View History

#pragma once
namespace nall {
//RS(n,k) = ReedSolomon<Length, Inputs>
template<uint Length, uint Inputs>
struct ReedSolomon {
enum : uint { Parity = Length - Inputs };
static_assert(Length <= 255 && Length > 0);
static_assert(Parity <= 32 && Parity > 0);
using Field = GaloisField<uint8_t, 255, 0x11d>;
template<uint Rows, uint Cols = 1> using Polynomial = Matrix<Field, Rows, Cols>;
template<uint Size>
static auto shift(Polynomial<Size> polynomial) -> Polynomial<Size> {
for(int n = Size - 1; n > 0; n--) polynomial[n] = polynomial[n - 1];
polynomial[0] = 0;
return polynomial;
}
template<uint Size>
static auto degree(const Polynomial<Size>& polynomial) -> uint {
for(int n = Size; n > 0; n--) {
if(polynomial[n - 1] != 0) return n - 1;
}
return 0;
}
template<uint Size>
static auto evaluate(const Polynomial<Size>& polynomial, Field field) -> Field {
Field sum = 0;
for(uint n : range(Size)) sum += polynomial[n] * field.pow(n);
return sum;
}
Polynomial<Length> message;
Polynomial<Parity> syndromes;
Polynomial<Parity + 1> locators;
ReedSolomon() = default;
ReedSolomon(const ReedSolomon&) = default;
ReedSolomon(const initializer_list<uint8_t>& source) {
uint index = 0;
for(auto& value : source) {
if(index >= Length) break;
message[index++] = value;
}
}
auto operator[](uint index) -> Field& { return message[index]; }
auto operator[](uint index) const -> Field { return message[index]; }
auto calculateSyndromes() -> void {
static const Polynomial<Parity> bases = [] {
Polynomial<Parity> bases;
for(uint n : range(Parity)) {
bases[n] = Field::exp(n);
}
return bases;
}();
syndromes = {};
for(uint m : range(Length)) {
for(uint p : range(Parity)) {
syndromes[p] *= bases[p];
syndromes[p] += message[m];
}
}
}
auto generateParity() -> void {
static const Polynomial<Parity, Parity> matrix = [] {
Polynomial<Parity, Parity> matrix{};
for(uint row : range(Parity)) {
for(uint col : range(Parity)) {
matrix(row, col) = Field::exp(row * col);
}
}
if(auto result = matrix.invert()) return *result;
throw; //should never occur
}();
for(uint p : range(Parity)) message[Inputs + p] = 0;
calculateSyndromes();
auto parity = matrix * syndromes;
for(uint p : range(Parity)) message[Inputs + p] = parity[Parity - (p + 1)];
}
auto syndromesAreZero() -> bool {
for(uint p : range(Parity)) {
if(syndromes[p]) return false;
}
return true;
}
//algorithm: Berlekamp-Massey
auto calculateLocators() -> void {
Polynomial<Parity + 1> history{1};
locators = history;
uint errors = 0;
for(uint n : range(Parity)) {
Field discrepancy = 0;
for(uint l : range(errors + 1)) {
discrepancy += locators[l] * syndromes[n - l];
}
history = shift(history);
if(discrepancy) {
auto located = locators - history * discrepancy;
if(errors * 2 <= n) {
errors = (n + 1) - errors;
history = locators * discrepancy.inv();
}
locators = located;
}
}
}
//algorithm: brute force
//todo: implement Chien search here
auto calculateErrors() -> vector<uint8_t> {
calculateSyndromes();
if(syndromesAreZero()) return {}; //no errors detected
calculateLocators();
vector<uint8_t> errors;
for(uint n : range(Length)) {
if(evaluate(locators, Field{2}.pow(255 - n))) continue;
errors.append(Length - (n + 1));
}
return errors;
}
template<uint Size>
static auto calculateErasures(array_view<uint8_t> errors) -> maybe<Polynomial<Size, Size>> {
Polynomial<Size, Size> matrix{};
for(uint row : range(Size)) {
for(uint col : range(Size)) {
uint index = Length - (errors[col] + 1);
matrix(row, col) = Field::exp(row * index);
}
}
return matrix.invert();
}
template<uint Size>
auto correctErasures(array_view<uint8_t> errors) -> int {
calculateSyndromes();
if(syndromesAreZero()) return 0; //no errors detected
if(auto matrix = calculateErasures<Size>(errors)) {
Polynomial<Size> factors;
for(uint n : range(Size)) factors[n] = syndromes[n];
auto errata = matrix() * factors;
for(uint m : range(Size)) {
message[errors[m]] += errata[m];
}
calculateSyndromes();
if(syndromesAreZero()) return Size; //corrected Size errors
return -Size; //failed to correct Size errors
}
return -Size; //should never occur, but might ...
}
//note: the erasure matrix is generated as a Polynomial<NxN>, where N is the number of errors to correct.
//because this is a template parameter, and the actual number of errors may very, this function is needed.
//the alternative would be to convert Matrix<Rows, Cols> to a dynamically sized Matrix(Rows, Cols) type,
//but this would require heap memory allocations and would be a massive performance penalty.
auto correctErrata(array_view<uint8_t> errors) -> int {
if(errors.size() >= Parity) return -errors.size(); //too many errors to be correctable
switch(errors.size()) {
case 0: return 0;
case 1: return correctErasures< 1>(errors);
case 2: return correctErasures< 2>(errors);
case 3: return correctErasures< 3>(errors);
case 4: return correctErasures< 4>(errors);
case 5: return correctErasures< 5>(errors);
case 6: return correctErasures< 6>(errors);
case 7: return correctErasures< 7>(errors);
case 8: return correctErasures< 8>(errors);
case 9: return correctErasures< 9>(errors);
case 10: return correctErasures<10>(errors);
case 11: return correctErasures<11>(errors);
case 12: return correctErasures<12>(errors);
case 13: return correctErasures<13>(errors);
case 14: return correctErasures<14>(errors);
case 15: return correctErasures<15>(errors);
case 16: return correctErasures<16>(errors);
case 17: return correctErasures<17>(errors);
case 18: return correctErasures<18>(errors);
case 19: return correctErasures<19>(errors);
case 20: return correctErasures<20>(errors);
case 21: return correctErasures<21>(errors);
case 22: return correctErasures<22>(errors);
case 23: return correctErasures<23>(errors);
case 24: return correctErasures<24>(errors);
case 25: return correctErasures<25>(errors);
case 26: return correctErasures<26>(errors);
case 27: return correctErasures<27>(errors);
case 28: return correctErasures<28>(errors);
case 29: return correctErasures<29>(errors);
case 30: return correctErasures<30>(errors);
case 31: return correctErasures<31>(errors);
case 32: return correctErasures<32>(errors);
}
return -errors.size(); //it's possible to correct more errors if the above switch were extended ...
}
//convenience function for when erasures aren't needed
auto correctErrors() -> int {
auto errors = calculateErrors();
return correctErrata(errors);
}
};
}