bsnes/nall/elliptic-curve/curve25519.hpp

58 lines
1.4 KiB
C++
Raw Normal View History

#pragma once
#if defined(EC_REFERENCE)
#include <nall/elliptic-curve/modulo25519-reference.hpp>
#else
#include <nall/elliptic-curve/modulo25519-optimized.hpp>
#endif
namespace nall::EllipticCurve {
struct Curve25519 {
auto sharedKey(uint256_t secretKey, uint256_t basepoint = 9) const -> uint256_t {
secretKey &= (1_u256 << 254) - 8;
secretKey |= (1_u256 << 254);
basepoint &= ~0_u256 >> 1;
point p = scalarMultiply(basepoint % P, secretKey);
field k = p.x * reciprocal(p.z);
return k();
}
private:
using field = Modulo25519;
struct point { field x, z; };
const BarrettReduction<256> P = BarrettReduction<256>{EllipticCurve::P};
inline auto montgomeryDouble(point p) const -> point {
field a = square(p.x + p.z);
field b = square(p.x - p.z);
field c = a - b;
field d = a + c * 121665;
return {a * b, c * d};
}
inline auto montgomeryAdd(point p, point q, field b) const -> point {
return {
square(p.x * q.x - p.z * q.z),
square(p.x * q.z - p.z * q.x) * b
};
}
inline auto scalarMultiply(field b, uint256_t exponent) const -> point {
point p{1, 0}, q{b, 1};
for(uint bit : reverse(range(255))) {
bool condition = exponent >> bit & 1;
cswap(condition, p.x, q.x);
cswap(condition, p.z, q.z);
q = montgomeryAdd(p, q, b);
p = montgomeryDouble(p);
cswap(condition, p.x, q.x);
cswap(condition, p.z, q.z);
}
return p;
}
};
}