bsnes/higan/sfc/coprocessor/icd2/icd2.hpp

93 lines
2.2 KiB
C++
Raw Normal View History

#if defined(SFC_SUPERGAMEBOY)
Update to v098r01 release. byuu says: Changelog: - SFC: balanced profile removed - SFC: performance profile removed - SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed - SFC: Coprocessor, Controller (and expansion port) shared Thread code merged to SFC::Cothread - Cothread here just means "Thread with CPU affinity" (couldn't think of a better name, sorry) - SFC: CPU now has vector<Thread*> coprocessors, peripherals; - this is the beginning of work to allow expansion port devices to be dynamically changed at run-time - ruby: all audio drivers default to 48000hz instead of 22050hz now if no frequency is assigned - note: the WASAPI driver can default to whatever the native frequency is; doesn't have to be 48000hz - tomoko: removed the ability to change the frequency from the UI (but it will display the frequency used) - tomoko: removed the timing settings panel - the goal is to work toward smooth video via adaptive sync - the model is broken by not being in control of the audio frequency anyway - it's further broken by PAL running at 50hz and WSC running at 75hz - it was always broken anyway by SNES interlace timing varying from progressive timing - higan: audio/ stub created (for now, it's just nall/dsp/ moved here and included as a header) - higan: video/ stub created - higan/GNUmakefile: now includes build rules for essential components (libco, emulator, audio, video) The audio changes are in preparation to merge wareya's awesome WASAPI work without the need for the nall/dsp resampler.
2016-04-09 03:40:12 +00:00
struct ICD2 : Emulator::Interface::Bind, GameBoy::Interface::Hook, Cothread {
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
shared_pointer<Emulator::Stream> stream;
static auto Enter() -> void;
auto main() -> void;
auto init() -> void;
auto load() -> void;
auto unload() -> void;
auto power() -> void;
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
auto reset(bool soft = false) -> void;
//interface.cpp
auto lcdScanline() -> void override;
auto lcdOutput(uint2 color) -> void override;
auto joypWrite(bool p15, bool p14) -> void override;
auto loadRequest(uint id, string name, string type, bool required) -> void override;
auto loadRequest(uint id, string name, bool required) -> void override;
auto saveRequest(uint id, string name) -> void override;
auto videoRefresh(const uint32* data, uint pitch, uint width, uint height) -> void override;
auto audioSample(const double* samples, uint channels) -> void override;
auto inputPoll(uint port, uint device, uint id) -> int16 override;
//mmio.cpp
auto read(uint24 addr, uint8 data) -> uint8;
auto write(uint24 addr, uint8 data) -> void;
//serialization.cpp
auto serialize(serializer&) -> void;
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
uint revision;
private:
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
Emulator::Interface::Bind* bind = nullptr;
GameBoy::Interface::Hook* hook = nullptr;
struct Packet {
auto operator[](uint addr) -> uint8& { return data[addr & 15]; }
uint8 data[16];
};
Packet packet[64];
uint packetsize;
uint joyp_id;
bool joyp15lock;
bool joyp14lock;
bool pulselock;
bool strobelock;
bool packetlock;
Packet joyp_packet;
uint8 packetoffset;
uint8 bitdata, bitoffset;
uint8 r6003; //control port
uint8 r6004; //joypad 1
uint8 r6005; //joypad 2
uint8 r6006; //joypad 3
uint8 r6007; //joypad 4
uint8 r7000[16]; //JOYP packet data
uint8 mlt_req; //number of active joypads
uint8 output[4 * 512];
uint read_bank;
uint read_addr;
uint write_bank;
uint write_addr;
};
#else
struct ICD2 : Coprocessor {
auto init() -> void {}
auto load() -> void {}
auto unload() -> void {}
auto power() -> void {}
auto reset() -> void {}
auto read(uint24, uint8) -> uint8 { return 0; }
auto write(uint24, uint8) -> void { return; }
auto serialize(serializer&) -> void {}
uint revision;
};
#endif
extern ICD2 icd2;