mirror of https://github.com/bsnes-emu/bsnes.git
165 lines
4.4 KiB
C++
165 lines
4.4 KiB
C++
|
#pragma once
|
||
|
|
||
|
#include <nall/hash/sha512.hpp>
|
||
|
#if defined(EC_REFERENCE)
|
||
|
#include <nall/elliptic-curve/modulo25519-reference.hpp>
|
||
|
#else
|
||
|
#include <nall/elliptic-curve/modulo25519.hpp>
|
||
|
#endif
|
||
|
|
||
|
namespace nall { namespace EllipticCurve {
|
||
|
|
||
|
struct Ed25519 {
|
||
|
Ed25519() {
|
||
|
field y = field(4) * field(5).reciprocal();
|
||
|
field x = recoverX(y);
|
||
|
point B{x, y, 1, x * y};
|
||
|
for(uint n : range(253)) {
|
||
|
Bscalar[n] = B;
|
||
|
B = edwardsDouble(B);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
auto publicKey(uint256_t privateKey) const -> uint256_t {
|
||
|
auto H = uint512_t{Hash::SHA512(to_vector(privateKey)).output()};
|
||
|
auto a = clamp(H);
|
||
|
auto A = compress(scalarMultiplyB(modL(a)));
|
||
|
return A;
|
||
|
}
|
||
|
|
||
|
auto sign(const vector<uint8_t>& message, uint256_t privateKey) const -> uint512_t {
|
||
|
auto H = uint512_t{Hash::SHA512(to_vector(privateKey)).output()};
|
||
|
auto a = clamp(H);
|
||
|
auto A = compress(scalarMultiplyB(modL(a)));
|
||
|
|
||
|
Hash::SHA512 hash1;
|
||
|
hash1.input(to_vector(upper(H)));
|
||
|
hash1.input(message);
|
||
|
auto r = uint512_t{hash1.output()};
|
||
|
auto R = compress(scalarMultiplyB(modL(r)));
|
||
|
|
||
|
Hash::SHA512 hash2;
|
||
|
hash2.input(to_vector(R));
|
||
|
hash2.input(to_vector(A));
|
||
|
hash2.input(message);
|
||
|
uint512_t k = modL(uint512_t{hash2.output()});
|
||
|
uint256_t S = modL(k * a + r);
|
||
|
|
||
|
return uint512_t(S) << 256 | R;
|
||
|
}
|
||
|
|
||
|
auto verify(const vector<uint8_t>& message, uint512_t signature, uint256_t publicKey) const -> bool {
|
||
|
auto R = decompress(lower(signature));
|
||
|
auto A = decompress(publicKey);
|
||
|
if(!R || !A) return false;
|
||
|
uint256_t S = upper(signature);
|
||
|
|
||
|
Hash::SHA512 hash;
|
||
|
hash.input(to_vector(lower(signature)));
|
||
|
hash.input(to_vector(publicKey));
|
||
|
hash.input(message);
|
||
|
auto r = uint512_t{hash.output()};
|
||
|
|
||
|
auto p = scalarMultiplyB(modL(S));
|
||
|
auto q = edwardsAdd(R(), scalarMultiply(modL(r), A()));
|
||
|
if(!onCurve(p) || !onCurve(q)) return false;
|
||
|
if(p.x * q.z - q.x * p.z) return false;
|
||
|
if(p.y * q.z - q.y * p.z) return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
using field = Modulo25519;
|
||
|
struct point { field x, y, z, t; };
|
||
|
point Bscalar[253];
|
||
|
const field D = -field(121665) * field(121666).reciprocal();
|
||
|
|
||
|
inline auto clamp(uint256_t p) const -> uint256_t {
|
||
|
p &= ((0_u256 - 1) >> 2) - 7;
|
||
|
p |= 1_u256 << 254;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
inline auto recoverX(field y) const -> field {
|
||
|
field y2 = y.square();
|
||
|
field x = ((y2 - 1) * (D * y2 + 1).reciprocal()).squareRoot();
|
||
|
return x() & 1 ? -x : x;
|
||
|
}
|
||
|
|
||
|
inline auto onCurve(point p) const -> bool {
|
||
|
if(!p.z) return false;
|
||
|
if(p.x * p.y != p.z * p.t) return false;
|
||
|
if(p.y.square() - p.x.square() - p.z.square() - p.t.square() * D) return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
inline auto decompress(uint256_t c) const -> maybe<point> {
|
||
|
field y = c & (1_u256 << 255) - 1;
|
||
|
field x = recoverX(y);
|
||
|
if(c >> 255) x = -x;
|
||
|
point p{x, y, 1, x * y};
|
||
|
if(!onCurve(p)) return nothing;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
inline auto compress(point p) const -> uint256_t {
|
||
|
field r = p.z.reciprocal();
|
||
|
field x = p.x * r;
|
||
|
field y = p.y * r;
|
||
|
return (x() & 1) << 255 | (y() & ((0_u256 - 1) >> 1));
|
||
|
}
|
||
|
|
||
|
inline auto edwardsDouble(point p) const -> point {
|
||
|
field a = p.x.square();
|
||
|
field b = p.y.square();
|
||
|
field c = p.z.square();
|
||
|
field d = -a;
|
||
|
field e = (p.x + p.y).square() - a - b;
|
||
|
field g = d + b;
|
||
|
field f = g - (c + c);
|
||
|
field h = d - b;
|
||
|
return {e * f, g * h, f * g, e * h};
|
||
|
}
|
||
|
|
||
|
inline auto edwardsAdd(point p, point q) const -> point {
|
||
|
field a = (p.y - p.x) * (q.y - q.x);
|
||
|
field b = (p.y + p.x) * (q.y + q.x);
|
||
|
field c = (p.t + p.t) * q.t * D;
|
||
|
field d = (p.z + p.z) * q.z;
|
||
|
field e = b - a;
|
||
|
field f = d - c;
|
||
|
field g = d + c;
|
||
|
field h = b + a;
|
||
|
return {e * f, g * h, f * g, e * h};
|
||
|
}
|
||
|
|
||
|
inline auto scalarMultiply(uint512_t e, point q) const -> point {
|
||
|
point p{0, 1, 1, 0}, c;
|
||
|
for(uint n : rrange(253)) {
|
||
|
p = edwardsDouble(p);
|
||
|
c = edwardsAdd(p, q);
|
||
|
bool bit = e >> n & 1;
|
||
|
cmove(bit, p.x, c.x);
|
||
|
cmove(bit, p.y, c.y);
|
||
|
cmove(bit, p.z, c.z);
|
||
|
cmove(bit, p.t, c.t);
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
inline auto scalarMultiplyB(uint512_t e) const -> point {
|
||
|
point p{0, 1, 1, 0}, c;
|
||
|
for(uint n : rrange(253)) {
|
||
|
bool bit = e >> n & 1;
|
||
|
c = edwardsAdd(p, Bscalar[n]);
|
||
|
cmove(bit, p.x, c.x);
|
||
|
cmove(bit, p.y, c.y);
|
||
|
cmove(bit, p.z, c.z);
|
||
|
cmove(bit, p.t, c.t);
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
}}
|