bsnes/nall/elliptic-curve/ed25519.hpp

145 lines
4.2 KiB
C++
Raw Normal View History

#pragma once
#include <nall/hash/sha512.hpp>
#if defined(EC_REFERENCE)
#include <nall/elliptic-curve/modulo25519-reference.hpp>
#else
#include <nall/elliptic-curve/modulo25519-optimized.hpp>
#endif
namespace nall::EllipticCurve {
static const uint256_t L = (1_u256 << 252) + 27742317777372353535851937790883648493_u256;
struct Ed25519 {
auto publicKey(uint256_t privateKey) const -> uint256_t {
return compress(scalarMultiply(B, clamp(hash(privateKey)) % L));
}
auto sign(array_view<uint8_t> message, uint256_t privateKey) const -> uint512_t {
uint512_t H = hash(privateKey);
uint256_t a = clamp(H) % L;
uint256_t A = compress(scalarMultiply(B, a));
uint512_t r = hash(upper(H), message) % L;
uint256_t R = compress(scalarMultiply(B, r));
uint512_t k = hash(R, A, message) % L;
uint256_t S = (k * a + r) % L;
return uint512_t(S) << 256 | R;
}
auto verify(array_view<uint8_t> message, uint512_t signature, uint256_t publicKey) const -> bool {
auto R = decompress(lower(signature));
auto A = decompress(publicKey);
if(!R || !A) return false;
uint256_t S = upper(signature) % L;
uint512_t r = hash(lower(signature), publicKey, message) % L;
auto p = scalarMultiply(B, S);
auto q = edwardsAdd(R(), scalarMultiply(A(), r));
if(!onCurve(p) || !onCurve(q)) return false;
if(p.x * q.z - q.x * p.z) return false;
if(p.y * q.z - q.y * p.z) return false;
return true;
}
private:
using field = Modulo25519;
struct point { field x, y, z, t; };
const field D = -field(121665) * reciprocal(field(121666));
const point B = *decompress((field(4) * reciprocal(field(5)))());
const BarrettReduction<256> L = BarrettReduction<256>{EllipticCurve::L};
inline auto input(Hash::SHA512&) const -> void {}
template<typename... P> inline auto input(Hash::SHA512& hash, uint256_t value, P&&... p) const -> void {
for(uint byte : range(32)) hash.input(uint8_t(value >> byte * 8));
input(hash, forward<P>(p)...);
}
template<typename... P> inline auto input(Hash::SHA512& hash, array_view<uint8_t> value, P&&... p) const -> void {
hash.input(value);
input(hash, forward<P>(p)...);
}
template<typename... P> inline auto hash(P&&... p) const -> uint512_t {
Hash::SHA512 hash;
input(hash, forward<P>(p)...);
uint512_t result;
for(auto byte : reverse(hash.output())) result = result << 8 | byte;
return result;
}
inline auto clamp(uint256_t p) const -> uint256_t {
p &= (1_u256 << 254) - 8;
p |= (1_u256 << 254);
return p;
}
inline auto onCurve(point p) const -> bool {
if(!p.z) return false;
if(p.x * p.y - p.z * p.t) return false;
if(square(p.y) - square(p.x) - square(p.z) - square(p.t) * D) return false;
return true;
}
inline auto decompress(uint256_t c) const -> maybe<point> {
field y = c & ~0_u256 >> 1;
field x = squareRoot((square(y) - 1) * reciprocal(D * square(y) + 1));
if(c >> 255) x = -x;
point p{x, y, 1, x * y};
if(!onCurve(p)) return nothing;
return p;
}
inline auto compress(point p) const -> uint256_t {
field r = reciprocal(p.z);
field x = p.x * r;
field y = p.y * r;
return (x & 1) << 255 | (y & ~0_u256 >> 1);
}
inline auto edwardsDouble(point p) const -> point {
field a = square(p.x);
field b = square(p.y);
field c = square(p.z);
field d = -a;
field e = square(p.x + p.y) - a - b;
field g = d + b;
field f = g - (c + c);
field h = d - b;
return {e * f, g * h, f * g, e * h};
}
inline auto edwardsAdd(point p, point q) const -> point {
field a = (p.y - p.x) * (q.y - q.x);
field b = (p.y + p.x) * (q.y + q.x);
field c = (p.t + p.t) * q.t * D;
field d = (p.z + p.z) * q.z;
field e = b - a;
field f = d - c;
field g = d + c;
field h = b + a;
return {e * f, g * h, f * g, e * h};
}
inline auto scalarMultiply(point q, uint256_t exponent) const -> point {
point p{0, 1, 1, 0}, c;
for(uint bit : reverse(range(253))) {
p = edwardsDouble(p);
c = edwardsAdd(p, q);
bool condition = exponent >> bit & 1;
cmove(condition, p.x, c.x);
cmove(condition, p.y, c.y);
cmove(condition, p.z, c.z);
cmove(condition, p.t, c.t);
}
return p;
}
};
}