bsnes/higan/processor/hg51b/registers.cpp

75 lines
2.4 KiB
C++
Raw Normal View History

Update to v102r27 release. byuu says: Changelog: - processor/gsu: minor code cleanup - processor/hg51b: renamed reg(Read,Write) to register(Read,Write) - processor/lr35902: minor code cleanup - processor/spc700: completed code cleanup (sans disassembler) - no longer uses internal global state inside instructions - processor/spc700: will no longer hang the emulator if stuck in a WAI (SLEEP) or STP (STOP) instruction - processor/spc700: fixed bug in handling of OR1 and AND1 instructions - processor/z80: minor code cleanup - sfc/dsp: revert to initializing registers to 0x00; save for ENDX=random(), FLG=0xe0 [Jonas Quinn] Major testing of the SNES game library would be appreciated, now that its CPU cores have all been revised. We know the DSP registers read back as randomized data ... mostly, but there are apparently internal latches, which we can't emulate with the current DSP design. So until we know which registers have separate internal state that actually *is* initialized, I'm going to play it safe and not break more games. Thanks again to Jonas Quinn for the continued research into this issue. EDIT: that said ... `MD works if((ENDX&0x30) > 0)` is only a 3:4 chance that the game will work. That seems pretty unlikely that the odds of it working are that low, given hardware testing by others in the past :/ I thought if worked if `PITCH != 0` before, which would have been way more likely. The two remaining CPU cores that need major cleanup efforts are the LR35902 and ARM cores. Both are very large, complicated, annoying cores that will probably be better off as full rewrites from scratch. I don't think I want to delay v103 in trying to accomplish that, however. So I think it'll be best to focus on allowing the Mega Drive core to not lock when processors are frozen waiting on a response from other processors during a save state operation. Then we should be good for a new release.
2017-06-19 02:07:54 +00:00
auto HG51B::registerRead(uint8 addr) const -> uint24 {
switch(addr) {
Update to v079r04 release. byuu says: Back from vacation. We were successful in emulating the Cx4 using LLE during my vacation. We finished on June 15th. And now that I'm back, I've rewritten the code and merged it into bsnes official. With that, the very last HLE emulation code in bsnes has now been purged. [...] The emulation is as minimal as possible. If I don't see an opcode or feature actually used, I don't implement it. The one exception being that I do support the vector override functionality. And there are also dummy handlers for ld ?,$2e + loop, so that the chip won't stall out. But things like "byte 4" on rdram/wrram, the two-bit destination selections for all but ld, etc are treated as invalid opcodes, since we aren't 100% sure if they are there and work as we hypothesize. I also only map in known registers into the 256-entry register list. This leaves 90% of the map empty. The chip runs at 20MHz, and it will disable the ROM while running. DMA does transfer one byte at a time against the clock and also locks out the ROM. rdbus won't fetch from IRAM, only from ROM. DMA transfer only reads from ROM, and only writes to RAM. Unless someone verifies that they can do more, I'll leave it that way. I don't yet actually buffer the program ROM into the internal program RAM just yet, but that is on the to-do list. We aren't entirely sure how that works either, but my plan is to just lock the Cx4 CPU and load in 512-bytes. There's still a few unknown registers in $7f40-5f that I don't do anything with yet. The secondary chip disable is going to be the weirdest one, since MMX3 only has one chip. I'd really rather not have to specify the ROM mapping as two separate chips on MMX2 and as one on MMX3 just to support this, so I don't know yet. Save state support is of course there already. Speed hit is 118fps HLE -> 109fps LLE in most scenes. Not bad, honestly.
2011-06-22 13:27:55 +00:00
case 0x00: return regs.a;
case 0x01: return regs.acch;
case 0x02: return regs.accl;
case 0x03: return regs.busdata;
case 0x08: return regs.romdata;
case 0x0c: return regs.ramdata;
case 0x13: return regs.busaddr;
case 0x1c: return regs.ramaddr;
case 0x50: return 0x000000;
case 0x51: return 0xffffff;
case 0x52: return 0x00ff00;
case 0x53: return 0xff0000;
case 0x54: return 0x00ffff;
case 0x55: return 0xffff00;
case 0x56: return 0x800000;
case 0x57: return 0x7fffff;
case 0x58: return 0x008000;
case 0x59: return 0x007fff;
case 0x5a: return 0xff7fff;
case 0x5b: return 0xffff7f;
case 0x5c: return 0x010000;
case 0x5d: return 0xfeffff;
case 0x5e: return 0x000100;
case 0x5f: return 0x00feff;
case 0x60: return regs.gpr[ 0];
case 0x61: return regs.gpr[ 1];
case 0x62: return regs.gpr[ 2];
case 0x63: return regs.gpr[ 3];
case 0x64: return regs.gpr[ 4];
case 0x65: return regs.gpr[ 5];
case 0x66: return regs.gpr[ 6];
case 0x67: return regs.gpr[ 7];
case 0x68: return regs.gpr[ 8];
case 0x69: return regs.gpr[ 9];
case 0x6a: return regs.gpr[10];
case 0x6b: return regs.gpr[11];
case 0x6c: return regs.gpr[12];
case 0x6d: return regs.gpr[13];
case 0x6e: return regs.gpr[14];
case 0x6f: return regs.gpr[15];
}
return 0x000000;
}
Update to v102r27 release. byuu says: Changelog: - processor/gsu: minor code cleanup - processor/hg51b: renamed reg(Read,Write) to register(Read,Write) - processor/lr35902: minor code cleanup - processor/spc700: completed code cleanup (sans disassembler) - no longer uses internal global state inside instructions - processor/spc700: will no longer hang the emulator if stuck in a WAI (SLEEP) or STP (STOP) instruction - processor/spc700: fixed bug in handling of OR1 and AND1 instructions - processor/z80: minor code cleanup - sfc/dsp: revert to initializing registers to 0x00; save for ENDX=random(), FLG=0xe0 [Jonas Quinn] Major testing of the SNES game library would be appreciated, now that its CPU cores have all been revised. We know the DSP registers read back as randomized data ... mostly, but there are apparently internal latches, which we can't emulate with the current DSP design. So until we know which registers have separate internal state that actually *is* initialized, I'm going to play it safe and not break more games. Thanks again to Jonas Quinn for the continued research into this issue. EDIT: that said ... `MD works if((ENDX&0x30) > 0)` is only a 3:4 chance that the game will work. That seems pretty unlikely that the odds of it working are that low, given hardware testing by others in the past :/ I thought if worked if `PITCH != 0` before, which would have been way more likely. The two remaining CPU cores that need major cleanup efforts are the LR35902 and ARM cores. Both are very large, complicated, annoying cores that will probably be better off as full rewrites from scratch. I don't think I want to delay v103 in trying to accomplish that, however. So I think it'll be best to focus on allowing the Mega Drive core to not lock when processors are frozen waiting on a response from other processors during a save state operation. Then we should be good for a new release.
2017-06-19 02:07:54 +00:00
auto HG51B::registerWrite(uint8 addr, uint24 data) -> void {
switch(addr) {
Update to v079r04 release. byuu says: Back from vacation. We were successful in emulating the Cx4 using LLE during my vacation. We finished on June 15th. And now that I'm back, I've rewritten the code and merged it into bsnes official. With that, the very last HLE emulation code in bsnes has now been purged. [...] The emulation is as minimal as possible. If I don't see an opcode or feature actually used, I don't implement it. The one exception being that I do support the vector override functionality. And there are also dummy handlers for ld ?,$2e + loop, so that the chip won't stall out. But things like "byte 4" on rdram/wrram, the two-bit destination selections for all but ld, etc are treated as invalid opcodes, since we aren't 100% sure if they are there and work as we hypothesize. I also only map in known registers into the 256-entry register list. This leaves 90% of the map empty. The chip runs at 20MHz, and it will disable the ROM while running. DMA does transfer one byte at a time against the clock and also locks out the ROM. rdbus won't fetch from IRAM, only from ROM. DMA transfer only reads from ROM, and only writes to RAM. Unless someone verifies that they can do more, I'll leave it that way. I don't yet actually buffer the program ROM into the internal program RAM just yet, but that is on the to-do list. We aren't entirely sure how that works either, but my plan is to just lock the Cx4 CPU and load in 512-bytes. There's still a few unknown registers in $7f40-5f that I don't do anything with yet. The secondary chip disable is going to be the weirdest one, since MMX3 only has one chip. I'd really rather not have to specify the ROM mapping as two separate chips on MMX2 and as one on MMX3 just to support this, so I don't know yet. Save state support is of course there already. Speed hit is 118fps HLE -> 109fps LLE in most scenes. Not bad, honestly.
2011-06-22 13:27:55 +00:00
case 0x00: regs.a = data; return;
case 0x01: regs.acch = data; return;
case 0x02: regs.accl = data; return;
case 0x03: regs.busdata = data; return;
case 0x08: regs.romdata = data; return;
case 0x0c: regs.ramdata = data; return;
case 0x13: regs.busaddr = data; return;
case 0x1c: regs.ramaddr = data; return;
case 0x60: regs.gpr[ 0] = data; return;
case 0x61: regs.gpr[ 1] = data; return;
case 0x62: regs.gpr[ 2] = data; return;
case 0x63: regs.gpr[ 3] = data; return;
case 0x64: regs.gpr[ 4] = data; return;
case 0x65: regs.gpr[ 5] = data; return;
case 0x66: regs.gpr[ 6] = data; return;
case 0x67: regs.gpr[ 7] = data; return;
case 0x68: regs.gpr[ 8] = data; return;
case 0x69: regs.gpr[ 9] = data; return;
case 0x6a: regs.gpr[10] = data; return;
case 0x6b: regs.gpr[11] = data; return;
case 0x6c: regs.gpr[12] = data; return;
case 0x6d: regs.gpr[13] = data; return;
case 0x6e: regs.gpr[14] = data; return;
case 0x6f: regs.gpr[15] = data; return;
}
}